

Good Practice in Ronneby: Combining RES for self-consumption

Rachel C. Tully

AGENEX – Extremadura Energy Agency

17 October, 2017 | Seville (Spain) Low-Carbon Economy Policy Learning Platform

1. ENERSELVES Project

AIMS

- ✓ To promote new policies or improve existing ones to support integration of RES in buildings for self-consumption
- √ To reach NZEB EU targets

HOW?

- ✓ Identifying which are the best RES in each country
- ✓ Improving 7 OPs in 7 EU regions involving their Managing Authorities
- ✓ Influencing 11,8 M€ of SFs by the policy instruments throughout the Project
- √ 37 policy learning events with stakeholders
- √ 175 people increasing professional capacity attending interregional events
- √ 110 good practices collected in a Guide of best Practices

WHEN?

- √ Phase 1: Jan 2017-Dec 2018
- ✓ Phase 2: Jan 2019-Dec 2020

2. Good Practice in Ronneby

- Private dwelling with renewable energy production for heating and electricity.
- It studies the efficiency of integrating: geothermal heat pump + rooftop solar panels
- To increase PV efectiveness, storing batteries were installed testing two different models: Tesla and Fronius.
- Analyse each technology separately and their combination: efficiency/profitability

Some Key Performance Indicators:

- PV cells = 7,5 kW West direction
- Storage capacity = 8,4 kWh
- Energy generated/year = 6000 kWh
- Sells 50% -Consumes 50%
- Energy consumed = 14.000 kWh/year
- > Investment support = 20% cells 60% storage
- Pay-off time 10 years for cells 100 years for storage

3. Advantages & Disadvantages

Energy storage for the PV power is still not cost – effective due to its high cost.

- ✓ Combining more than one technology to achieve highest efficiency and profitability
- ✓ Geothermal energy is profitable and well consolidated in Sweden
- ✓ PV installations have a stable regulatory framework and receive grants from public funds

4. Who is the GP useful for?

- This combination model of PV power and geothermal energy would be good for almost all countries.
- It allows the replacement of fosil fuel for heating, using instead the electricity generated by PV systems.
- Payback periods for PV systems could be shortened to 7 years in Spain or Italy and even 5 years in Malta – Considering the same mechanisms and grant systems this technology is offered in Sweden.

5. Additional info can be found...

- ENERSELVES Project
 https://www.interregeurope.eu/enerselves/
- International Geothermal Association https://www.geothermal-energy.org/
- European Photovoltaic Industry Association http://www.solarpowereurope.org/home/
- Manufacturers https://www.fronius.com/en

Thank you!

Rachel C. Tully

AGENEX - Extremadura Energy Agency

www.interregeurope.eu/enerselves/

LOCAL ENERGY LOOP Brittany (FR)

Sara MINISINI

European project manager – SET-UP project coordinator

Bretagne Développement Innovation (FR)

s.minisini@bdi.fr

SET-UP at a glance

« Smart Energy Transition to Upgrade regional Performance »

Our common objective is to improve energy performance thanks to enhanced policies on **SMART GRID.**

In order to identify efficient energy management tools, we focus solutions to 3 main challenges smart grid deployment:

Consumer engagement

Andalusian Energy Agency

Funding sources

Business models

Local Energy Loop

WHY

To support territories in the **development of their local energy projects**, focused on:

- Energy management
- Use of renewable energy sources
- Balance between energy consumption and production

HOW

Financial support to 2 consecutive phases of selected projects:

- Pre-operational phase: support to the development of an action plan (50% of expenses ≤100k€).
- Implementation and monitoring phase: support to infrastructure and equipment (40% of expenses ≤150k€).

WHAT

Selection is made through calls for projects.

Main selection criteria include the potential of the project to be replicable, to have a major impact in line with regional objectives, to contribute to the development of the energy industry, to capitalise on local resources and initiatives.

Eligible expenses are staff costs for project coordination, external consultancy, investments.

Advantages and disadvantages

Advantages	Disdvantages
Projects in line with local needs&resources and regional priorities	Projects are mainly R&D projects (i.e. focused on technological development, not necessarily able to meet consumer needs in the short term)
Support provided in different stages of project development	
No limits as for technological options adopted and type of energy exploited and allows various forms of territorial solutions	Slow diagnostic phase, needed to target concrete projects
Representatives of local authorities involved in the awareness raising process	

Who is the GP useful for

BENEFICIARIES

Main beneficiaries are **territories**, including urban, periurban, rural territories as well as non-interconnected islands.

- Direct beneficiaries are local communities (e.g. conurbations, pays, regional natural parcs, federations of municipalities).
- Indirect beneficiaires are industrial developers of energy services, equipments and infrastructures.

PARTNERS

Local Energy Loop projects can involve other organisations, such as municipalities, local action groups, companies. Their energy projects will be included in the **global approach** adopted for the whole target territory.

OTHERS

Potential for duplication/adaptation:

- By other national and/or regional authorities (funding scheme)
- By local communities, municipalities, etc. (projects)

Where to get more information

Presentation of the programme

http://www.bretagne.bzh/jcms/prod_214969/fr/boucle-energetique-locale-2015

Examples of approved Local Energy Loop projects

Brest rive droite
Bien La
Iles du Ponant

Contacts

Maximilien LE MENN
Regional Council of Brittany

maximilien.lemenn@bretagne.bzh

Thank you