

INERTWASTE

Transforming inert waste into technosoils for the restoration of mining areas.

Restoration of the mine of Eugi (northern Spain).

Iñigo Seminario Errea

MAGNA

<u>iniqo.seminario@magnesitasnavarras.es</u>

Mikel Arandigoyen Vidaurre

MAGNA

mikel.arandiqoyen@magnesitasnavarras.es

22 MAY 2024 | TLJ2 Slovenia

CONTEXT

- MAGNA is a mining company, leader in the production of magnesium oxide based solutions.
- Located in Navarra (northern Spain), it operates in 45 countries.
- MAGNA has the commitment to restore its mine of Eugi (Navarra).

KEY ISSUES OF THIS PRACTICE

WASTE ACCUMULATION:

- Lack of space to store inert waste derived from MAGNA's manufacturing process.
- > 21.707 m³ sludges/year.

SCARCITY OF SOIL FOR RESTORATION:

- High demand of topsoil: > 10.000 m³/season.
- Lack of extraction sites.
- High transport costs: 40 km per truck journey.
- Poor soil quality: cold, from deep layers, debris contamination, crop field seeds, etc.

SOLUTION FOR THE KEY ISSUES

• Using the inert waste generated by the factory to create technosoils for the restoration of the mine.

- "Technosoil": engineered soil created for land improvement, made using a mix of organic and inorganic materials.
- A pilot project was conducted in 2019-2024.

PILOT PROJECT

Total cost: 667.753€

Public funding: 12%

Regional

National

PILOT PROJECT: DESIGN OF THE TECHNOSOIL MIXTURE

- 5 technosoil mixtures were prepared + control soil.
- Mixtures were designed to achieve a loam soil texture.
- All the inert waste used came from MAGNA.
- Organic matter was introduced for soil fertility enhancement.

		% in the mix		Technosoil 1	Technosoil 2	Technosoil 3	Technosoil 4	Technosoil 5	Control soil
MAGNA materials (all inert, without contaminants nor heavy metals)		Inorganic waste (INERT)	Sand 1-4 mm	20	20	30	20	20	il of the mine
			Sand 4-12 mm	20	20	0	20	20	
			Sulfamag	0	0	15	0	0	
			Sludge	30	35	30	35	30	
			Flotation tailings	15	15	15	15	15	
Nearby organic matter input Phosphorus supply		Organic waste	Peat	0	0	0	5	0	l so
			Compost	15	10	10	5	10	tura
			Manure	0	0	0	0	5	Natı
			Struvite	0,1	0,1	0,1	0,1	0,1	

PILOT PROJECT: GREENHOUSE AND LABORATORY TRIALS

- Soil samples taken every 15 days during one year.
- Technosoils #1 and #5 were selected as best options due to high nutrient availability, rapid surface coverage, good height growth, and correct pH/conductivity.

Technosoil	Sand	Clay	Silt	Texture		Ph	CE	O.M. %	
1	31	9.6	59.4	silty-loam	8.24		446	1.2	
2	36.9	17.8	45.3	loam	8.66		171.7	1.05	
3	61	25.4	13.6	silty-clay- loam		9.4	2490	0.9	
4	30	12.6	57.4	silty-loam	9).11	566.5	1.01	
5	38.6	4.8	56.6	silty-loam	8	3.44	233.9	2.01	
Control soil	82	2.4	15.6	sandy	7	7.31	158.5	3.07	
Example									

of results

PILOT PROJECT: FIELD TEST

- Field tests were carried out with technosoils #1 and #5.
- The mixture was prepared on a larger scale and spread in various locations.
- Under outdoor conditions, technosoil #5 showed the highest cover and herbaceous growth, due to the manure content. Similar properties or better than natural soil.

PILOT PROJECT: OTHER TECHNOSOIL APPLICATIONS

- Additional tests were carried out to evaluate the potential of technosoils for recreating natural grassland.
- Technosoils achieved good vegetation cover and similar species diversity compared to other soils.

CONCLUSIONS AND NEXT STEPS

- Technosoils help to convert waste into a resource, and have shown to be viable for landscape restoration.
- Technosoils created from MAGNA's inert waste address the issues of storage limitations and the scarcity of soil in the market.
- MAGNA plans to scale-up the use of technosoils in the restoration of entire slopes.
- The Government of Navarra will use this practice to improve the ERDF within the INERTWASTE project.

MAIN CHALLENGES

- Scalability: scaling up the production of technosoils to integrate large-scale projects in the production system of MAGNA.
- Cost and logistics: producing, transporting, applying technosoils at large scales may require significant investments in infrastructure and equipment.
- **Designing appropriate mixtures**: creating technosoils with the necessary physical, chemical, and biological properties for vegetation growth requires a deep understanding of local soils and vegetation.

Thank you iGracias! Eskerrik asko!

www.interregeurope.eu/INERTWASTE