INERTWASTE # Using various artificial soil mixtures to restore dry grasslands in quarries Pierre Bourguet¹, Julie Chenot-Lescure^{1,2,3}, Elise Buisson², Renaud Jaunatre³, Hervé Ramone², Thierry Dutoit² ³ University Grenoble Alpes, INRAE, UR LESSEM, France MAY 21-22, 2024 | Maribor – TLJ 2 ¹ Société des Carrières de la Ménudelle, France, representative of the Provence Alpes Côte d'Azur Regional Federation of Public Works ² Avignon University, UMR CNRS IRD Aix Marseille University, Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE), France; ## INTRODUCTION: QUARRY REHABILITATION - 2 700 quarries in France - In France: ~380 millions / tons granulates are extracted / year, only 6.6% (25 M/T) from recycling processes - In Région Sud: ~23 millions / tons granulates are extracted / year - and ~ 4 M/T from inertwaste recycling processes - Consumption: 7 tons / inhabitant / year! ...and only 24 kg of cheese / inhabitant / year - Regulatory obligation to redevelop quarries: most often requirements relating to the landscape and biodiversity ## Introduction: quarry rehabilitation - Requires soil - Soil may have been discarded, used elsewhere or stockpiled (lowering its quality) - Industrial process inert waste: from 0/30 grading screening between 15,000 and 20,000 tonnes per year - low nutrient and organic contents, low mycorrhize, poor soil structure, low water storage → often insufficient for successful revegetation - Surface materials resulting from stripping to reach the area to be mined represent around 300,000 tonnes - high nutrient contents, seedbank of undesirable species (ruderal and exotic invasive species) □ not adapted for success restoration of nutrient poor vegetation with high species diversity # Study area: La Crau plain # La Crau dry grassland = reference ecosystem # Quarries: from exploitation to rehabilitation Groundwater table # Quarries: from exploitation to rehabilitation # Quarries: from exploitation to rehabilitation # **Experimental design** #### Fifty 5×5m plots #### Ten of each substrate mixture QM 100% raw QM = Quarry Material QM_AS 75% QM + 25% AS HALF 50% QM + 50% AS AS_QM 25% QM + 75% AS AS 100% AS = Arable Soil # **Experimental design** 5 plots of each substrate mixture sown with Brachypodium (B. retusum & B. hybridum) 5 plots of each substrate mixture not sown Vegetation surveys in 2×2 m plots ## Results – soil parameters Clay, Silt, OM, N, P, K, CEC Fine sand, CaCO3 Non target enecies low sown ## **Conclusions** 100% 75% 50% 25% QM + 75% AS 100% AS = Arable Soil | | laiget | J | Non-target species | | | | |---------------------|-------------------|-----------|-----------------------|----------|-----------|-------| | | Richness | Cover | | Richness | | Cover | | raw Quarry Material | | | ot | †
low | +
sown | | | QM + 25% AS | | | high when not
sown | †
low | +
sown | | | QM + 50% AS | ++
high | +
high | lgh wl | †
low | +
sown | | | | | | \boldsymbol{L} | | | | high high Target species Sowing Brachypodium - reduces the cover of both target and non-target species - helps getting a grassland physiognomy descite the reference of the cover of both target and non-target species. Reduce sowing