

European Union European Regional Development Fund

Developing Transition Pathways towards Climate-Neutral Mobility in European Cities

Dr Emilia Smeds, University of Westminster Steve Wright, Vectos / SRL Prof Peter Jones, University College London

1 December 2021

SUMP-PLUS

Developing Transition Pathways towards Climate-Neutral Mobility in European Cities

CliMobCity 2050 project meeting, 1 December 2021

Dr Emilia Smeds, University of Westminster

Steve Wright, Vectos / SRL

Prof Peter Jones, University College London

Focus of the SUMP-PLUS project

- Directly oriented at contributing to SUMP 2.0 (and 3.0) through producing new guidance
- **Pathways:** Accelerating SUMP implementation
- Links: coordination between transport and other urban sectors

Development of SUMP Topic Guide

- New SUMP Topic Guide on how cities can develop transition pathways to achieve carbon-neutral mobility (while also meeting other objectives). To be submitted to EC in autumn 2022.
- New policy context. To enable cities to achieve EU Green Deal and DG MOVE Strategy, need to emphasise centrality of climate targets, in relation to SUMP process. To achieve climate-neutrality, 90% reduction in transport emissions must be achieved by 2050 – requires much more radical measures and strategic planning processes.
- **Transition Pathways:** developing 20-30 year vision, policy mix and strategic policy timeline (while accelerating implementation in the shorter term)

Strategic planning for a 20 to 30-year horizon

SUMP 2.0 Guidelines

SMART targets – Achievable based on existing competences and partnerships

Planning for growth – measure packages based on **forecasting**

SUMP+ Transition Pathway

Targets that must be Achieved – long-term and interim CO_2 emission reduction targets

Vision-led planning – measure appraisal based on **backcasting**

Backcasting method based on 'Vision & Validate' SUMP-PLUS C and M: Sensitivity tests 1. Make Forecasts: 2. Develop set of **'Predict &** generate fan schemes which SCENARIOS **Provide'** 100000-00-00 meet some parts of fan of possible demands, plus other objectives

Figure 2.9 (see SUMP-PLUS D1.2, p.55). Contrasting the traditional 'Predict & provide' approach reliant on forecasting, with the 'Vision & Validate' approach reliant on backcasting from a desired future. © CREATE project. Source: D5.3 CREATE Guidelines (p.39).

Backcasting method – previous applications

- A normative methodology that takes visioning as a starting point, originating in foresight studies; applied in EU projects since 2000 (Miola 2008)
- Application led by researchers to analyse how different policy packages could help achieve transport emission reductions in the Netherlands (Geurs and van Wee 2000), Sweden (Åkerman and Höjer 2006), Finland (Tuominen et al. 2014), and London (VIBAT project); and at the EU level (Hötl et al. 2018)
- Two issues: 1) "implementation gap" between optimal policy packages and action taken by participating policy-makers; 2) "competence gap" between researcher-led and modelling-intensive backcasting and the competences of city planning departments.
- Challenge for SUMP-PLUS: how to go beyond researcher-supported and *city-specific* backcasting exercises → to develop *practitioner-friendly*, *general* guidelines (strategic planning steps) for a *range* of European city types

Pathway for realising the desired city by 2050

- New strategic planning approach
- Vision of the desired future city: anchored in a holistic long-term strategy for urban development
- Climate-neutrality:
 Achieving 2030 and 2050
 EU climate targets
- While meeting other objectives: e.g. Vision Zero, well-being, air quality

Transition Pathway: development process

8 steps to develop a 20-30 year

policy mix and strategic timeline for

how to build the capacity to implement it

Concrete output: long-term strategic plan, complemented by SUMPs or shorter-term Implementation Strategies

8

Step 3: Establish policy mix that can achieve targets

Carbon reduction is the primary objective

- Main focus of the policy mix assessment
- But cities have other objectives that must also be considered in the transition
- For example:
 - Vision zero fatalities
 - Eliminate congestion
 - Fair and equal society (access to all)
- Secondary assessment of impacts of carbon reduction policies on other objectives
 - \rightarrow revision of carbon reduction policy mix

Basic principles for carbon reduction

2 fundamental factors that influence carbon emissions from transport:

- What is the mix of these policies required to meet carbon reduction targets
- How does the mix vary over time \rightarrow transition pathway

Avoid the need to travel long distances through localisation 2.

a. daily trips for shopping, leisure, education activities localised within 15-minute walkable neighbourhood

Avoid the need to travel by substituting physical travel with

b. personal business trips avoided due to digital access to

a. commuting trips avoided due to home working

c. shopping trips avoided due to home delivery

CIVITAS

CliMobCity 2050 project meeting • 1 December 2021 • Steve Wright

Developing a City-specific policy mix

Wide variation in city context

- Mode share
- Relative significance of passenger and freight movements
- Spatial form (urban to rural)

AVOID policy – 4 strategies

digital access to services/home delivery

services (GP's, banking)

1.

- Different levels of technology readiness and speed of adoption
- Variation in energy sources for electricity
- Often limited capabilities for detailed emissions modelling

SHIFT policy

- **Shift** mode of travel from car to sustainable modes.
 - <3km: from car to walk / cycle 0
 - 3km-8km: from car to cycle / PT
 - >8km: from car to PT / carpool 0
- **IMPROVE policy** impact on average gCO2e/km
 - Improving fuel efficiency of conventional petrol/diesel engines,
 - Improving fuel emissions by switching vehicle fleet to battery electric,
 - Improving electricity generation by switching to renewables,
 - Improving energy efficiency of electric batteries.

To help cities build their transition pathway \rightarrow

Provide guidance and information to support cities in choosing suitable **policy mix**

11

Example 1

INPUT	ARAME	TERS					
Backgrou	nd data	r surface t	ransport c	arbon omis	sion from	1990 to 2019	5%
	iange in ca	i suitace t			31011 11 0111	1990 10 2019	J 70
What type	e of area be	est describ	es your city	4			Urban
							2021
What is th	e % mode	share for o	car driver t	rips (all trip	os)		30%
What is th	ie % mode	share for o	ar driver t	rips (comm	uter trips)		40%
				i i			
AVOID po	olicy						
Enter the	% point inc	crease in w	orking fror	n home by	2050 (fror	n 2019 base case)	20%
Enter the	% point inc	rease in p	ersonal bu	siness trins	(e.g. bank	ing health) that	40%
are digitis	ed or beco	me telepho	one consul	tation by 2	050 (from	2019 base)	4070
Enter the	% point inc	crease in sh	nopping de	livered to t	he home b	y 2050 (from 201	9 40%
base)							
Enter the	% point inc	crease of tr	ips for sho	oping. leisu	ure and ed	ucation localised	20%
within a 1	5 minute w	alk from h	iome, by 20	050 (from 2	2019 base)		
SHIFT po	icy						50/
Enter the (from 201	% point shi 9 base casi	ITT from cal	r ariver mo	ide share to	o alternativ	e modes by 2050	5%
(110111201	5 Dase case						
	noligy						
IMPROVI	policy						
IMPROVI	% of electri	icy generat	ted from re	enewables	(including	nuclear) by 2050	80%
IMPROVI Enter the	% of electri	icy generat	ted from re	enewables	(including	nuclear) by 2050	80%
IMPROVI Enter the	% of electro	icy generat	ted from re	enewables	(including	nuclear) by 2050 cars on the road	80%
IMPROVI Enter the Enter the 2050 (fror	% of electr % improve n 2019 bas	icy generat ment in IC e case) - [6	ted from re E fuel effici expected to	enewables iency of co be 30%]	(including nventional	nuclear) by 2050 cars on the road l	80%
IMPROVI Enter the Enter the 2050 (fror	% of electr % improve n 2019 bas	icy generat ment in IC e case) - [e	ted from re E fuel effici expected to	enewables iency of co be 30%]	(including nventional	nuclear) by 2050 cars on the road l	80%
IMPROVI Enter the Enter the 2050 (from Enter the	% of electr % improve n 2019 bas % improve	icy general ment in IC e case) - [e ment in ele	ted from re E fuel effici expected to ectric batte	enewables iency of col b be 30%] ery efficience	(including nventional	nuclear) by 2050 cars on the road l (from 2019 base	80% by 20%

*

Example 2

CIVITAS

INPUT PARAMETERS					
Background data					50(
Enter % change in car surface tr	ansport ca	irbon emis	sion from :	1990 to 2019	5%
What type of area best describe	s your city	1			Urban
What is the % mode share for ca	ar driver ti	rips (all trip	os)		30%
What is the % mode share for ca	ar driver ti	rips (comm	uter trips)		40%
AVOID policy					
Enter the % point increase in wo	orking fror	n home by	2050 (fron	n 2019 base case)	20%
Enter the % point increase in pe	rsonal bus	siness trips	(e.g. bank	ing, health) that	40%
are digitised or become telepho	ne consult	tation by 2	050 (from :	2019 base)	
Enter the % point increase in sh	opping de	livered to t	he home b	y 2050 (from 2019	40%
base)					
Enter the % point increase of tri	ns for sho	nning leisi	ire and ed	ucation localised	20%
within a 15 minute walk from he	ome, by 20)50 (from 2	019 base)		2070
SHIFT policy					
Enter the % point shift from car	driver mo	de share to	o alternativ	re modes by 2050	10%
IMPROVE policy					
Enter the % of electricy generate	ed from re	newables	(including i	nuclear) by 2050	80%
Enter the % improvement in ICE	fuel effici	ency of co	ventional	cars on the road h	v 20%
2050 (from 2019 base case) - [ex	pected to	be 30%]			,,
Enter the % improvement in ele	ctric batte	ry efficiend	cy by 2050	(from 2019 base	40%
Enter the % improvement in ele	ctric batte	ry efficiend	y by 2050	(from 2019 base	40%

13

Example 3

INPUT P	PARAME	TERS						
Backgrou	ind data							
Enter % cl	nange in ca	r surface ti	ransport ca	arbon emis	sion from	1990 to 2019	5%	
What type	e of area be	est describe	es your city	/			Rural	
	• • • • • • • • • • •	ahaya fay a		·)		70%	
what is u	ie % moue	share for c	ar unver u	nps (an trip)5)		70%	
What is th	ne % mode	share for c	ar driver t	rins (comm	uter trins)		80%	
vinacio d		Share for e					0070	
AVOID po	olicy							
Enter the	ہ % point inc	rease in w	orking fror	n home by	2050 (from	n 2019 base case)	30%	
Enter the	% point inc	rease in pe	ersonal bus	siness trips	(e.g. bank	ing, health) that	40%	
are digitis	ed or beco	me telepho	one consul	tation by 2	050 (from 3	2019 base)		
-								
Enter the	% point inc	rease in sh	nopping de	livered to t	he home b	by 2050 (from 2019	40%	
base)								
Enter the	% point inc	rease of tr	ins for sho	nning leisi	ure and ed	ucation localised	10%	
within a 1	5 minute w	alk from h	ome, by 20)50 (from 2	2019 base)		10/6	
SHIFT po	licy							l
Enter the	% point shi	ft from car	^r driver mo	de share t	o alternativ	ve modes by 2050	10%	
(from 201	9 base case	e)						
IMPROVI	E policy							
Enter the	% of electr	icy generat	ed from re	newables	(including I	nuclear) by 2050	80%	
							0.001	
Enter the	% improve	ment in ICI	E fuel effici	ency of col	nventional	cars on the road by	20%	
2050 (1101	11 2019 092	e case) - [e	specied to	be 50%]				
Enter the	% improve	ment in ele	ectric hatte	ry efficient	w hy 2050	(from 2019 base	40%	
case) - [ex	pected to I	be 40% by	2050]	ry enicient	y by 2030	(11011/2013 0836	4070	
1000, [0,								

14

Step 3 guidance – helping cities answer questions and make decisions

- Guidance will allow cities to explore 'what if' variations in policy mix around an initial case.
- This helps to understand what mix can achieve the targets and allows the city to visualise the relative significance of each policy.
- It helps to understand the actions/milestones needed to achieve the targets and to establish a schedule for implementing policies.

For example:

CIVITAS

- If localisation measures cannot be fully delivered by 2030, how much more uptake of electric vehicles would be necessary to still reach the 2030 targets?
- If more shift from car to other modes can be achieved, can I delay the need for large scale electric vehicle uptake or the need for energy transition to renewables?
- Do I need full renewable energy transition to renewables and 100% electric vehicle uptake to achieve 2050 targets

Next tasks in Step 3

Not just about cars!

Also need to consider how to reduce emissions from freight and PT.

Not just about achieving carbon targets by a certain date!

The timing at which a policy strategy takes effect influences the total carbon emissions. Which strategies can deliver biggest carbon benefits by bringing forward delivery?

Not just about carbon!

Cities have many other concerns and objectives.

Reduce congestion Improve safety Fair and equal society (access for all) Healthy lifestyles For each of the other city objectives an assessment should be made against these of the impacts from the AVOID, SHIFT and IMPROVE strategies within the policy mix.

Achieving mobility transitions: existing evidence

Transitions are not only about WHAT to implement (measures), but crucially about HOW to implement (timing, politics, finance, governance).

CREATE project – transition to sustainable mode split in London, Paris, Vienna, Copenhagen, Berlin since the 1960s

Achieving mobility transitions: existing evidence

CREATE project – 8M success factors for mobility transition

Political dynamics

Implementation approaches

Financial resources

Organisational capacities

Mood	Public, political and professional acceptability	Mechanisms	Engagement, enforcement, administrative, delivery: cooperation and coordination
Motivation	Trigger for change (e.g. deterioration in traffic conditions)	Measures	PT and cycling investments reallocate road space
Mass	Capacity building deepen and broaden the skills base	Methods	Better forecasting and appraisal methods
Momentum	Building on success: pilots and policy windows	Money	Funding mechanisms

Measures

Achieving mobility transitions: existing evidence

SURES AND

SUMPs-UP survey of 328 European municipalities:

- Need for support: measure implementation, rather than selection
- Major barriers to SUMP implementation: funding and governance

THE EUROPEAN UNION

Step 6 and 7: identifying enabling actions – new funding, governance and partnership models

By when do we need to take actions to overcome institutional/financial barriers, to enable the implementation of policy X and achievement of mid-term target Y?

Figure 5.22: Example of a timeline visualising interdependencies between policy milestones, enabling actions and other transformations interlinked with the urban mobility transition.

Example: city-regional governance in Alba Iulia, RO

Over a 20 to 30-year time horizon, it is possible to change the framework conditions for SUMP planning. For example, PT new governance structures.

Source: Presentation by Stelian Nicola, General Manager of STP Alba Iulia (regional public transport company). Available online at: https://www.eltis.org/sites/default/files/16-06-2015_a_nicola-perspectives on mobility poverty alba iulia region.pdf.

Example: financial capacities in Bristol, UK

Being clear and realistic about capacities to achieve climate-neutral mobility at present – gap between funding available and funding needed, for policy mix.

Figure 5.20: Estimated 'funding gap' for delivering policies in the West of England Combined Authority's Joint Local Transport Plan 2020-36. Source: WECA (2020, p.124).

A Transition Pathway should not be understood (only) as...

...a hypothetical scenario consisting only of emissions and policy packages...

...but as the **full set of policies**, **resources**, **institutional and political changes** that will allow a city to reach the 2050 target of climate-neutral mobility.

Remaining questions for Topic Guide

- The need for parallel planning processes: medium-term + long-term; SUMP/SECAP + Transition Pathway; forecasting + backcasting
- What kind of organisational structures and processes to recommend in the Guidelines: how to create ownership of the Transition Pathway plan and avoid it becoming just another 'on the self' document
- Identifying case studies of real-life mobility/2050 pathway development: Antwerp, Manchester, Stockholm, Barcelona, Dresden, but also smaller cities...
- Generalised guidance, but making it relevant enough to different types of cities...

Context-specific Pathways in different cities

New framework of 9 different European city types, based on analysis of SUMPs-UP survey data from 328 municipalities \rightarrow SUMP-PLUS Deliverable D1.1

Region / City population size	less than 50.000	between 50.000 and	more than 500.000			Very small municipalities (<50.000)	Small and mid-sized cities (50.000-500.000)	Large cities and city-regions (>500.000)
		500.000				PLATANIAS	LUCCA	
Northern and Western Europe						Population: 20.972 inhab. Population density: 42.6 inhab./km2	Population: 89.346 inhab. Population density: 480 inhab./km2	
	e	E	C		, C	Adjusted regional GDP/capita: €14.676	Adjusted regional GDP/capita: €25.113	
	IČ			1	2	Mode share (private car): 70%, trend- increasing	Mode share (private car): 64.7%, trend- slowly decreasing	
		~	~	Southern	F	AGRICULTURAL / TOURISM	COMMERCIAL / TOURISM	
			111	Europe	S	SATELLITE / Commuting zone	POLYCENTRIC	
					с	CAR-BASED	CAR-BASED	
	6	6			L	LOW AUTONOMY	MEDIUM AUTONOMY	
Central and Eastern Europe					Р	LOW CAPACITY Not yet familiar with sustainable urban transport planning. Does not have a SUMP, with the first plan currently under	MEDIUM CAPACITY Has applied sustainable mobility measures, but not systematically. Currently implementing the SUMP.	
	M	M	M				KLAIPEDA	
				1			Population: 172.272 inhab. Population density: 1356 inhab./km2	
					0		Adjusted regional GDP/capita: €15.600	
Southern Europe	C	<u> </u>	©	_1	M		Mode share (private car): 34%, trend- decreasing	
					F		INDUSTRIAL / PORT	-
	M	M	M		S		POLYCENTRIC	
					с		CAR-BASED	
Level 1 indicators:		Level 2 indicators:			L		MEDIUM AUTONOMY	
City population size	Population density	GDP (PPP) per capita	Car modal share and trend		Ρ		MEDIUM CAPACITY Has applied sustainable mobility measures, but not systematically. Currently implementing the SUMP.	
Region of Europe		ič	M	Central and Eastern Europe	_			

SUMP-PLUS outputs

This presentation is based on:

Smeds, E. and Jones, P. (2020). *Developing Transition Pathways towards Sustainable Mobility in European Cities: Conceptual framework and practical guidance.* Deliverable D1.2, H2020 CIVITAS SUMP-PLUS project.

Concepts are elaborated in:

Smeds, E. and Jones, P. (2021). Developing transition pathways for mobility in European cities - challenges and new approaches. In Abdullah, H. and Serrano Robles, E. (eds). Urban Mobility after COVID-19. Long-term strategies for the sustainable mobility transitions in European cities. CIDOB Monograph Series no. 82. Barcelona: Barcelona Centre for International Affairs (CIDOB) and Barcelona City Council, pp.31-36.
Smeds, E. and Cavoli, C. (2021). Pathways for accelerating transitions towards sustainable mobility in European cities. In Abdullah, H. (ed). Towards a European Green Deal with Cities. The urban dimension of the

EU's sustainable growth strategy. CIDOB Monograph Series, no.80. Barcelona: Barcelona Centre for International Affairs (CIDOB), pp. 75-91.

All available at: <u>https://sump-plus.eu/resources</u>.

We look forward to your comments!

e.smeds@westminster.ac.uk steve.wright@vectos.eu

Legal Disclaimer: The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. The European Commission is not responsible for any use that may be made of the information contained therein. All images are provided by the respective partners (unless otherwise noted) and are approved for reproduction in this publication.

THE CIVITAS INITIATIVE IS CO-FINANCED BY THE EUROPEAN UNION

CIVITAS