Good Practice #6 – Tartu City's GIS | Location of the organisation in charge: | Country | Estonia | |---|-----------------------|--------------| | | Region | Tartu County | | | City | Tartu | | Main institution in charge: | Municipality of Tartu | | | Good practice general information | | | | | |-------------------------------------|---------|--------------|--|--| | Geographical scope of the practice: | Local | | | | | Location of the practice | Country | Estonia | | | | | Region | Tartu County | | | | | City | Tartu | | | | Good practice detailed information | | | |------------------------------------|--|--| | Short summary of the practice: | [111/160 characters] Location awareness and data are the key to providing comprehensive, attractive and efficient public e-services. | | | | [1375/1000-1500 characters] | |---|--| | | Issues addressed: | | Detailed information on the practice: | Increase the productivity of the city's asset management to be able to collect, store and exchange information more efficiently Provide access and transparency to all available data sources and applications the city has in their organization Build a co-creating digital environment to support stakeholders, public administration and locals to benefit from spatial datasets | | | The new GIS solution in Tartu is built on top of the ESRI ArcGIS platform that can be implemented as SaaS (software as a service), on-premises, or as a hybrid solution. This approach has provided the city with a complete set of tools to use and enhance the level of data-based decisions. The concept supports three key elements: | | | - Networking – user interactions - Ready to use software/infrastructure solutions - Data | | | Since 2016 Tartu has managed to restructure most of its spatial data and produce several new data sources the city's now using in day-to-day processes. Being able to interact with users, processing real-time data and evaluating patterns have significantly increased the usage of data in public services. Moreover, all tools are accessible with SSO (single-signon) which has also improved the general user experience. The vision was to become more flexible in terms of application development, shifting the | | | focus to service-based technology and increasing API usage. | | Resources needed: | [240/200-300 characters] Tartu uses the Esri Small Local Government Enterprise Agreement that depends on the city population. The solution is flexible and scalable to meet specific needs. Human resources: at least 1 GIS expert and 1 system administrator is advisable | | Timescale (start/end date): | 2016-ongoing | | | [480/300-500 characters] | | Evidence of success (results achieved): | GIS is widely used in six departments by more than 300 active users. Examples that have raised the effectiveness of management and the visibility of public services: - Tartu City General Plan 2040+ – this significant strategic document in terms of city development was enacted in a fully digital form - Leisure activities with workout instructions and a 360°-location overview - Funeral arrangement and grave ownership management e-application (in use in other municipalities as well) | | Challenges encountered: | [299/300 characters] The most time-consuming was to inspect and consolidate all geospatial datasets that already existed. Reaching a common understating of what to address, gather and store in terms of location data also took time & effort as previously collected information hadn't considered data quality requirements. | | | [968/500-1000 characters] | | Potential for learning or transfer: | Process-orientated ERD models – together with metadata – allow any user to save time on different workflow implementations. In terms of GIS data models, Tartu has set an example for many municipalities in Estonia – for example, the cemetery management solution is also used in Saaremaa and Valga. | | | Sharing web application templates that users can adjust to their needs without coding saves time and money. Using a somewhat out-of-the-box solution speeds up the time it takes to reach well-integrated and adjustable GIS software. The platform also: | | | Provides users with open data not just in machine-readable ways but allowing them to download well-known data formats (shp, Geojson) as well Provides co-creation tools and software by bringing different data sources and information to the audience while engaging them to be more active about how their living environment is changing Monitoring data by analysing it to find new perspectives for stakeholders and citizens | | Further information: | Link to where further information on the good practice can be found https://geohub.tartulv.ee | | Keywords: | Select from existing keywords (something similar to online platform, public e-administration, data analysis, mobile app, crowdsourcing, e-service) |