

Sustainable management of historic landfill sites - Mine it or leave it?

Andrea Winterstetter, PhD

University of Antwerp / VITO – Flemish Institute for Technological Research

Ulrich Kral, PhD

Technical University of Vienna

Antwerp, 26/02/2018

SUSTAINABLE LANDFILL MANAGEMENT & THE ROLE OF LANDFILL MINING

Goals of waste management

- 1) Protection of human health & the environment
- 2) Resource conservation
- ⇒ Options for the management of historic landfills
- A) Regulated aftercare: Limit environmental damage through cover, emission treatment & monitoring
- B) Remove the source of contamination & re-landfill offsite / upgrade existing landfill
- C) Landfill mining

LANDFILL MINING – DEFINITION

Landfill mining is a process whereby solid wastes which have previously been landfilled are excavated and processed to recover items of value, such as:

- Plastics
- Metals
- Glass
- Wood
- Soil
- New landfill space
- Land
- 0

DRIVERS OF LANDFILL MINING

- Prevent soil & groundwater contamination
- Upgrade unlined landfills to a lined system
- Reduce closure & aftercare costs
- Material recovery
- Energy recovery
- Reduce greenhouse gas emissions
- Land reclamation
- New landfill space & lifetime extension of existing landfills

Protection of waters

Climate protection

Lifetime extension of landfill

Recycling of land area

Resource extraction

HOW TO CLASSIFY LANDFILLS UNDER UNFC

United Nations Framework Classification for Resources (UNFC)

UNITED NATIONS FRAMEWORK CLASSIFICATION FOR RESOURCES (UNFC)

- Provide decision support for the management of old landfill sites
- Compare & prioritize different potential landfill mining projects
- Communicate critical factors & potential barriers (Winterstetter et al. 2015, 2018)
 - Knowledge on composition
 G1 G4
 - Economic viability
 E1 E3
 - 3. Technical feasibility & project status
 - 4. F1 F4

MINE IT OR LEAVE IT?

Screen data base
Estimate a landfill's
resource potential &
contamination level

1. Prospection

2. Exploration

3. Evaluation

4. Mining

Assess recoverable materials / land as a function of technology & project set-ups

Evaluate a landfill mining project under specific technical, legal, economic, environmental & social conditions

PROSPECTION

Screen old landfills for criteria such as land price, high metal share, contamination potential, flooding risk, high aftercare costs,

= depending on interest of the evaluator

Narrow down the number of potentially interesting landfills

Not relevant ones E3F3G4, with no information

1

EXPLORATION

For promising landfills more detailed investigation:

2

Material Flow Analysis (MFA) for energy and material flows

to demonstrate:

- a) The landfill's extractable & potentially usable share of materials
- b) Potential different technological & project set-up options?

EVALUATION

For landfills with promising composition & project set up: Discounted Cash Flow Analysis

3

$$NPV = -C_0 + \frac{C_1}{1+r} + \frac{C_2}{(1+r)^2} + \dots + \frac{C_T}{(1+r)^T}$$

$$-C_0 = Initial\ Investment$$

$$C = Cash\ Flow$$

$$r = Discount \ Rate$$

$$T = Time$$

Net Present Value (NPV) > 0: Project viable

ECONOMICS NEGATIVE?

NPV < 0: Project currently not viable!

- Realistic chances for economic extraction in the foreseeable future?
- Check: Development of prices, costs, new legislation,
 government incentives etc

CLASSIFICATION UNDER UNFC

Legend:

E3F3G2:

Bornem landfill under present conditions

E2F3G2:

Bornem landfill under potential future conditions

E1F2G1:

Turnhout landfill under present conditions

CONCLUSIONS

Evaluation must be performed on a case by case basis:

- ✓ Drivers & evaluation perspective: Remediation, resource / land recovery, landfill space....
- ✓ Site-specific parameters: Type, location & land price, volume, composition,
- ✓ Project-specific parameters: Stakeholder (private or public investor), choice of technology, project set-up, permits & licenses, neighbors etc.
- ✓ Systemic context: Legislation, markets, regional infrastructure etc.
- ✓ Timing of mining: Future development of costs, prices, legislation, available data and information.

UNFC allows for systematic comparison & prioritization of different potential LFM projects & other resource recovery projects

