Table of contents

INTRODUCTION .. 5
1. Context of this study .. 5
2. Objectives .. 6
3. Overview of the general approach ... 7
4. Focus on the key elements of the approach ... 10
5. Opportunities and benefits resulting from the carbon study ... 15
6. Limitation of the carbon study ... 16
7. Recommendations for further work ... 18

OUTCOMES OF THE CARBON STUDY AT THE LEVEL OF THE PARTNERSHIP 19
1. Main GHG emission sources at strait level ... 19
2. Significance of GHG emissions in straits .. 20
3. Comparative table between straits ... 21
4. Responses addressing key challenges for low carbon development of straits: EU policies and governance practices ... 23
5. Recommendations for future actions .. 24

OVERVIEW OF THE CARBON STUDY AT STRAIT LEVEL: DOVER / PAS DE CALAIS STRAIT 25
1. Analysis of the situation at the strait level .. 26
2. GHG emissions and key priorities for future actions .. 38
3. Decarbonization paths ... 46
4. Towards the implementation of action plans ... 52

OVERVIEW OF THE BASELINE STUDY AT STRAIT LEVEL: GULF OF FINLAND 55
1. Analysis of the situation at the strait level .. 56
2. GHG emissions and key priorities for future actions .. 65
3. Decarbonization paths ... 73
4. Towards the implementation of action plans ... 77

OVERVIEW OF THE BASELINE STUDY AT STRAIT LEVEL: FEHMARN BELT 79
1. Analysis of the situation at the strait level .. 80
2. GHG emissions and key priorities for future actions .. 86
3. Decarbonization paths ... 91
4. Towards the implementation of action plans ... 97

OVERVIEW OF THE BASELINE STUDY AT STRAIT LEVEL: CORSICA CHANNEL 98
Introduction

1. Context of this study

a) PASSAGE Project

The PASSAGE (Public Authorities Supporting low-carbon Growth in European maritime border regions) project involves 6 straits, with 11 partners from 8 countries.

It emerged from the European Strait Initiative (ESI) and is co-financed by the ERDF in the framework of the Interreg Europe programme. The European Straits Initiative was launched in 2009 by Pas-de-Calais County Council and Kent County Council and now includes 24 public authorities in Europe. Experiencing the features of a strait territory and the related human, social, economic and environmental challenges, their aim is to bring together strait territories and to structure projects along their common issues.

Even if straits have apparent basic similarities (a stretch of water that is surrounded by two coastal areas which are linked to their proper hinterlands), each side of a strait might have different carbon intensive economic activities and are often subject to different governance and laws as they are from different countries.

As a result of these area features, cross-border cooperation is required. Following the “Network Of STRAits” (NOSTRA) project, launched in 2012, which aimed to reinforce the governance tools supporting sustainable development, the 2016-2020 PASSAGE project is the second strait-related project to be supported by the INTERREG Europe programme (formerly Interreg IV C), and is dedicated to the development of low-carbon solutions in the straits areas.

At the request of the Pas-de-Calais County Council, a carbon study was launched in January 2017 in order to support the preparation of action plans at strait level by the partners of the PASSAGE Project.

b) Straits and climate change

Straits have unique geographies, and are characterised by diversified and specific economic activities, including transportation, industrial activities, tourism, services and manufacturing. Straits are important centres of communication, commerce and culture.
Straits include cities with an important population living on coastlines, and thus particularly vulnerable to global environmental change, such as rising sea levels and coastal storms. Additionally, all these economic activities may be a significant, and growing, sources of energy consumption and account for a significant percentage of greenhouse gas (GHG) emissions. This may include not only GHG emissions from “land based” activities (ports, industries, cities, tourism), but also “sea based” activities, such as domestic or international maritime transportation. Therefore, straits may play an important role in tackling climate change and responding to climate impacts, bringing an integrated management approach, considering marine areas and hinterlands, on both sides of the strait.

As for cities, strait’s ability to take effective action on mitigating climate change and monitoring progress, begins with developing a GHG inventory; a “carbon study”. Such an inventory will first enable straits to understand the main emissions contribution of different activities taking place at strait level. It may then allow straits to determine where to best direct mitigation efforts, where to best consolidate partnerships with key stakeholders, and finally create a strategy to reduce GHG emissions.

Nevertheless, it is worth noting that state, regional, city and company level inventories are mainly carried out because of legally binding obligations. Voluntary initiatives to account for and disclose GHG emissions are quite new practices, such as The Covenant of Mayors for Climate and Energy or the World Port Climate Initiative (WPCI). Very few studies have been carried out at strait level, and it is worth mentioning that the governance of these areas is often complex, because it involves multiple levels and responsibilities, as well as administrative and cultural divisions that may hinder the implementation of common action at a strait level.

2. Objectives

The aim of this “carbon study” is to provide a first review of knowledge, experience and requirements in terms of GHG emissions at a strait level, to enable partners of the PASSAGE project, as well as relevant stakeholders, to define the strategic direction for the better integration of “low carbon measures” in these straits.

In addition, to ensure credible reporting and good consistency in GHG accounting, this study proposes a framework on how emissions sources are defined and categorised, and a specific methodology for calculating and reporting GHG emissions and scientific studies (that are built on existing methodologies), related to the definition of a strait. A detailed methodology is provided in the Annexes.

In this study a total of 6 European straits have been involved: Dover / Pas de Calais Strait, Strait of Otranto, Strait of Corfu, Gulf of Finland’s Strait, Fehmarn Belt, and Corsica Channel.
3. Overview of the general approach

This carbon study has been designed by the project team, in agreement with Pas de Calais County Council and all participating PASSAGE partners. The study was carried out with the following steps.

a) Step 1: Understanding of the local context

During the first step of this study, the project team carried out a review of all the documents and information provided by PASSAGE partners. This desk review helped the project team to better understand the various local situations and to start identifying the main characteristics of each strait. For instance, Pas-de-Calais County Council provided a report presenting the GHG inventory carried out by the “Société d’exploitation des Ports du Détroit”, which is the unique operator for the ports of Calais and Boulogne-sur-Mer (see, for example, the charts below illustrating the GHG emissions in 2011 and 2014 for the port of Calais, in tons of CO\textsubscript{2} equivalent).

![Comparison of GHG emissions per sector in the Port of Calais, in 2011 and 2014 (Source: Bilan des émissions de gaz à effet de serre, Société d’exploitation des Ports du Détroit, 2016)](attachment:image)

Other relevant reports reviewed by the project team are those prepared under the “NOSTRA” project, which were very useful in strengthening the general level of knowledge on each strait. Following this desk review, the project team organised telephone interviews with the PASSAGE partners, using a preliminary questionnaire intended to identify the primary stakeholders to involve at strait level, and to gather initial information regarding the analysis of the specificities of each strait. Additionally, the first theoretical concepts were presented to the local partners so that they could also better understand the need for additional information and prepare to send inquiries to other relevant agencies for data collection. The table below presents the members of the PASSAGE project that have been interviewed by the project team.

| Table 1 - List of the PASSAGE project stakeholders interviewed |
|-----------------|-------------------|-------------------|
| Strait | Organisation |
| Liz FAGG | Dover / Pas de Calais strait |
| Doug KEMPSTER | Port of Dover |
The interviews with each PASSAGE project partner increased understanding of the context and specificities of each strait. These exchanges mainly enabled additional local context information to be identified, and it was also an opportunity to briefly present the first methodological approach to calculate the GHG emissions at a strait level. The port authorities were also invited to participate to these discussions, when possible. This information served as the basis for the design of the methodological framework, and for the preparation of the data collection tool.

b) Step 2: Literature review and expert interviews

The second step of the study was mostly done in parallel with the first step: the project team carried out a literature review of relevant studies and scientific publications related to the definition of a strait, the GHG emissions methodologies and actions for specific sectors and activities taking place at strait level. This review has been consolidated through several interviews with researchers and representatives of key organisations working on these fields. The table below presents the organisations and representatives that have been interviewed.

Table 2 - List of the people interviewed by the project team

<table>
<thead>
<tr>
<th>Name</th>
<th>Organisation</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frédérique LOEW-TURBOUT</td>
<td>Université de Caen</td>
<td>Atlas Transmanche</td>
</tr>
<tr>
<td>Nora MAREI</td>
<td>CNRS (PRODIG)</td>
<td>Expertise on Gibraltar strait and regional economics</td>
</tr>
<tr>
<td>François LEVARLET</td>
<td>T33 SRL</td>
<td>Study cross border needs (EU, 2016)</td>
</tr>
<tr>
<td>Patrick RIGOT-MULLER</td>
<td>Mines PARISTECH</td>
<td>Low-carbon shipping</td>
</tr>
</tbody>
</table>

 c) Step 3: Defining a methodological framework

The project team defined a common methodological framework for all the straits, based on the literature review and the interviews carried out in the previous steps. The framework includes a definition of the strait’s boundary, a description of the activities accounted for in the inventory, the calculation methodologies and a categorization of the emissions by sectors and sub-sectors. The
The methodological framework follows the main accounting and reporting principles from the *GPC Protocol Standard*. A methodological note was written to ensure transparency and that stakeholders had a good comprehension of the calculations and methodologies used. The detailed methodological framework is described further below in this report.

d) Step 4: Data collection and complementary literature review

The data collection was led by the PASSAGE partners in each strait. To facilitate the data collection, the project team provided a draft letter to be sent to each type of stakeholder (port authority, coastguards), describing the data needed and the deadline, along with a data collection tool. However, the tool was just indicative, the cells were not expected to be filled in one by one, but the tool enabled the stakeholders to identify the data needed under the project. The stakeholders were encouraged to send any database containing the data listed, in order to facilitate the process for the data holders.

To cope with the difficulties faced by partners to collect data and to inform the data collection tool, a complementary literature review was carried out by the project team. Based on the literature desk review, together with the information provided by PASSAGE partners, the project team was able to fill in some of the remaining data gaps in the data collection tool. Unfortunately, due to some data unavailability (“defence secret” classified data, for example), it was not possible to totally complete the GHG inventory for all the straits, and despite several hypothesis proposed by the project team, the required accuracy of the results could not be reached under this project. The main limitations of the study are presented further below in this report.

e) Step 5: Analysis at strait level and completion of individual monograph

During this step, the full information collected from both data collection tool and complementary literature review was documented in the form of an individual monograph dedicated to each PASSAGE straits. In each strait’s monograph, the current GHG emissions due to each sector and sub-sector considered in the area were presented.
f) Step 6: Transversal analysis and completion of final report and recommendations

A transversal analysis was conducted to draw the main lessons and key findings from the carbon study in each strait. Recommendations and good practices were provided to the PASSAGE partners while they were preparing their action plan. Recommendations for further work on this subject and for further actions to reduce the emissions are also presented in this final report.

4. Focus on the key elements of the approach

This section provides a detailed explanation on the methodological approaches being defined and used in the development of the GHG inventories of the Straits during this study.

a) Defining a strait: perimeter, activities

Geographers describe straits as “narrow stretches of water between two land masses joining two marine expanses” as explained by Nathalie Fau, a well-known expert on straits3. They can connect two oceans, or an ocean to a sea (the Strait of Gibraltar), two continents (the strait of Gibraltar, the Bosphorus), an island and a continent (Dover / Pas de Calais Strait), or two islands (Bonifacio Strait). In a paper published in 2003, the geographer Jean-Pierre Renard defines the Strait of Dover as a “terraqué” or terraqueous space, trans-border area (from the Latin words terra and aqua). Indeed, as recalled by Fau in HyperGeo, this complex space forms a maritime and terrestrial interface, and to study a strait it is necessary to consider longitudinal flows, cross-flows and the maritime space per se, since it at once constitutes the dividing line and the zone of contact in either direction.

The strait also induces several discontinuities, notably legal ones, administrative ones with different systems and competences for the local authorities across the border and, sometimes, economic ones when the two regions facing each other do not have the same level of economic activity. Cooperation is notable for maritime security and risk minimisation. The straits and the cross-border regions show and benefit from regional economic integration as documented by several OECD studies in the Oresund or Helsinki-Tallinn regions (OECD, 20134).

From a geographical point of view, a strait is a narrow stretch of water between two land-masses joining two marine expanses. Unlike cities, for which we can generally base studies on administratives boundaries, a strait is a complex area comprising a maritime space and a terrestrial interface, with a spatial dimension that can be subject to discussion and interpretation depending on the purpose of this definition. Moreover, there is no administrative boundary for a strait (although there are different administrative boundaries within a strait), and thus it is necessary to take into consideration functions and activities of a strait to be able to propose and justify a specific boundary.

From a functional point of view, a strait is the crossing-point where the crossing is the shortest possible. It is thus a core node of transport and communication, with a "bridge effect" stepping up maritime connections (ferries, container transport, ro-ro ferries etc.) or fixed links (bridges and tunnels). A strait can be seen as a transportation hub organized around the main ports on both side of the strait, involving longitudinal (between the main ports of the strait) and transit flows of goods and people

through the maritime corridor. Economic activities, as well as in-land transportation are then induced by these flows through the maritime corridor.

A strait is thus a maritime corridor through which there are longitudinal flows and transit flows. Chorems or (“chorèmes” in French) are proposed by Marei & Baron (2014⁵) to represent the spatial functions as well as to propose four possible different engines of the territorial development along a terraqueous frontier. This type of graphic representation identifies the main representative stakeholders (institutional, economic) of a strait activity, as well as their operational competences. An example is the port authority, with operational competences directly linked with the strait activity (notably the maritime freight between the two sides of the strait).

Finally, based on the literature review, and interviews carried with key experts and PASSAGE partners, a first schematic representation named “chorem” has been proposed for each strait, which represent the spatial functions and boundaries, as well as the main flows and induced economic activities to be potentially included in a GHG inventory. At a later stage, the individual straits were requested to validate the specific activities that can be found in their strait, and provide associated data for identified sectors and activities.

⁵ Penser le détroit de Gibraltar pour figurer l’entre-deux, Nora Marei et Nacima Baron Yellès. https://belgeo.revues.org/10632
b) Selecting the main activities related to GHG emissions taking place in the Straits

From an economical point of view, most of the straits in Europe are characterised by diverse economic activities, ranging from fishery, tourism, services and manufacture to industry. According to NOSTRA⁶, all these economic activities contribute directly to the local GDP and many provide essential employment opportunities for the local population as well as contributing to welfare. Additionally, as explained in the previous section, a strait can be seen as a transportation hub organized around the main ports on both side of the strait, involving longitudinal (between the main ports of the strait) and transit flows of goods and people through the maritime corridor. Economic activities, as well as in-land transportation are then induced by these flows through the maritime corridor.

During this study, a focus was made on the activities that have a potential and relevant impact in terms of GHG emissions. Based on the literature review and current framework in terms of GHG calculation and reporting, a first distinction was made to distinguish three main sectors and type of activities at strait level: “port” activities, “land-based” activities, and “sea-based” activities.

A second distinction with several sub-sectors was also proposed, to enable a better understanding of what physically happens in terms of GHG emissions, especially regarding transportation activities, (considering that GHG emissions from strait activities are mainly driven by transportation activities). This distinction should also help to identify the main stakeholders involved in GHG emissions of specific sub sector. The table below presents an exhaustive list of activities taking place in all the European straits and that are considered in the scope of this study.

<table>
<thead>
<tr>
<th>Ports</th>
<th>Ships in port areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations: port-owned and leased vehicles, buildings, port-owned and operated cargo-handling equipment, port purchased electricity for port administration-owned buildings, lighting and operations</td>
<td>In fairway channel, at anchor, in port basin, maneuvering at berth</td>
</tr>
<tr>
<td>Local maritime cruise: traffic between port-to-port inside the strait</td>
<td></td>
</tr>
<tr>
<td>International maritime cruise: ships arriving / departing from the ports located in the strait</td>
<td></td>
</tr>
<tr>
<td>Transit maritime traffic: traffic crossing the strait without calls at the straits’ ports</td>
<td></td>
</tr>
<tr>
<td>Road-railway-fluvial traffic: transportation of goods and persons departing and arriving at the strait’s ports</td>
<td></td>
</tr>
<tr>
<td>Tunnel</td>
<td></td>
</tr>
<tr>
<td>Induced economical activities: industries, residential and economical activities, tourism</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4 – Proposed categorization of GHG emissions at strait level (Source: I Care & Consult)

It is assumed in the present methodology that ports are able to influence strait’s GHG emissions, and as a consequence, ports should be considered as an important component of a low carbon strategy at strait level. The proposed designation includes:

- **Sectors**: define the topmost categorization of the strait’s GHG sources activities, mainly driven by flows of people and goods;

⁶ Baseline study of the Nostra Project: Final report
• **Sub-sectors**: this additional level of categorization enables the use of disaggregated data, and helps identify mitigation actions by partners and stakeholders.

It is important to clarify here, that the availability of data is a key factor in deciding whether to include or exclude several sub-sectors proposed above. Indeed, the GHG inventories that were built under the PASSAGE project are based on recent and easily available data, because the data collection needed to be finalized under a tight timescale.

c) **Setting a methodological framework**

During this study, the main accounting and reporting principles for strait GHG emissions follow the main principles from the *GPC Protocol Standard*, which enables a fair and true account of emissions:

Relevance: The reported GHG emissions shall appropriately reflect emissions occurring as a result of activities of a strait. The inventory can also serve the decision-making needs of the PASSAGE project members, taking into consideration relevant local, subnational, and national stakeholders and regulations. The principle of relevance applies when selecting data sources, and determining and prioritizing data collection improvements.

Completeness: Straits shall account for all required emissions sources within the inventory boundary. Any exclusion of emission sources should be justified and explained.

Consistency: Emissions calculations shall be consistent in approach, boundary, and methodology. Using consistent methodologies for calculating GHG emissions enables meaningful documentation of emission changes over time, trend analysis, and comparisons. Calculating emissions should follow the main methodological approaches available for GHG emissions inventory.

Transparency: Activity data, emission sources, emission factors, and accounting methodologies require adequate documentation and disclosure to enable verification. The information should be sufficient to allow individuals outside of the inventory process to use the same source data and derive the same results. All exclusions shall be clearly identified, disclosed and justified.

Accuracy: The calculation of GHG emissions shall not systematically overstate or understate actual GHG emissions. Accuracy should be sufficient to give decision makers and the public reasonable assurance of the integrity of the reported information. Uncertainties in the quantification process shall be reduced to the extent that it is possible and practical.

This methodology requires straits to measure and disclose a comprehensive inventory of GHG emissions and to total these emissions following a categorization of all emissions depending on where they physically occur.

Activities taking place within a strait can generate GHG emissions that occur inside the strait’s boundary, as well as outside the strait’s boundary (such as international maritime cruise for example). This methodological approach is based on an adapted application of the scopes framework used in the “GPC Protocol Standard”, and takes into consideration the strait-induced activities and the different abilities of strait stakeholders to take effective action on mitigating climate change.

The figure below illustrates which emission sources occur solely within the geographic boundary of a strait, which occur outside the geographic boundary of a strait, and which may occur across the geographic boundary:
Figure 5 – Illustration of the emission sources within and outside the strait’s boundary (Source: I Care & Consult)

This proposed methodological approach should enable strait inventories to be consolidated with existing available GHG inventories (for example the WPCI carbon footprint calculator\(^7\) used by a Port Authority, the \textit{Baseline Emission Inventory} carried out by a city involved in the Covenant of Mayors\(^8\) or an industrial plant located inside the strait boundary that carried out a specific GHG inventory of its activity\(^9\)), and to be compared with national GHG inventories, especially regarding international maritime traffic.

d) Calculation methodologies

The proposed methodology is based on the main purpose of a strait inventory, that is to say:

- Demonstrate leadership in climate change mitigation: stakeholders of PASSAGE project will propose a first GHG inventory of strait-induced activities, and try to engage the main relevant stakeholders, in order to promote and implement low-carbon operations and reduce GHG emissions at strait level;
- Estimate and understand the order of magnitude and the share of GHG emissions from straits activities in comparison to other territories in the European Union: this project will also enable stakeholders to estimate the consistency of the results with their country’s national inventories;
- Compare with, learn from, and share best practice with other straits: the PASSAGE project brings together six straits and eleven partners in several countries, that will map and understand the emissions contribution from different activities at a strait level.

\(^7\) http://wpci.iaphworldports.org/carbon-footprinting/
\(^8\) http://www.covenantofmayors.eu
This approach does not require specific methodologies to be used to produce emissions data. Instead it is based on the most appropriate methodologies used by the main stakeholders involved in strait activities, and already carrying out inventories for those activities, that is to say:

- Port authorities, following the WPCI carbon footprint calculator;
- Transportation companies, following the GLEC framework;
- Cities, following the GPC Protocol Standard or the Covenant of Mayors.

For most emission sources, as for companies or cities, the strait’s stakeholders will need to estimate GHG emissions by multiplying activity data by an emission factor associated with the activity being measured.

Activity data is a quantitative measure of a level of activity that results in GHG emissions taking place during a given period of time (2016 in the case of this study): For example, the electrical consumption due to port operations, or the ton-kilometers transported by trucks departing from a port, etc.

Emission factor is a measure of the mass of GHG emissions relative to a unit of activity: For example, estimating CO\textsubscript{2} emissions from the use of electricity involves multiplying data on kilowatt-hours (kWh) of electricity used by the emission factor (kgCO\textsubscript{2}/kWh) for electricity, which will depend on the technology and type of fuel used to generate the electricity.

Activity data will need to be gathered from a variety of sources, including national or local statistics, the country’s national GHG inventory report, scientific and technical articles, or GHG emission reports carried out by a specific stakeholder (for example Eurotunnel).

The calculation methodologies per sub-sector are detailed in the annex.

5. Opportunities and benefits resulting from the carbon study

Following the NOSTRA project, the carbon study carried out for the European Straits of PASSAGE is one of the first studies on the carbon footprint at a strait level. Through the work that has been carried out, PASSAGE partners have had access to some key opportunities during the study:

- Opportunity to deepen the collaboration with the cross-border partners in each strait and with the stakeholders outside their structure;
Opportunity to share good practices and collaborate with the PASSAGE partners.

The main benefits the PASSAGE partners could take advantage of as a result of the carbon study are:

- Awareness raising and capacity building of the PASSAGE partners on the mitigation of climate change issues;
- Analysis of the stakes at a strait level, in terms of GHG emissions, on which actions must be taken to reduce their impact on climate change;
- Awareness raising on the maritime emissions at a local level. This study aimed to allocate emissions at a local level and integrate them into the local stakeholders’ responsibilities. This occurred in a favourable timing with the adoption of an MRV (Monitoring, Reporting, Verification) Shipping Regulation by the European Commission and the IMO DCS (Data Collection System). This led to a lobbying action at a European level, as well as a common answer to the European public consultation on the revision of the policy on monitoring, reporting and verification of CO₂ emissions from maritime transport.
- Completion of an original and innovative study, to increase the knowledge of the GHG impact of these specific territories, the straits, in the continuity of different studies led by universities. This study brought a global perspective of the situation and evolution of the strait, as well as the identification of some gaps in addressing key challenges for the strait. This could also lead to the publication of a scientific article.

6. Limitation of the carbon study

The main limitation was to juggle multiple straits with specific characteristics (geography, economy etc.) and the will to build a common and homogeneous methodological approach. The main limitations linked to the approach were:

- **Type of straits**: there were major differences between the straits studied, in terms of economic activities and maritime transport specifically. For example, the strait of Dover / Pas de Calais is a major hub of transport, with almost 20% of worldwide maritime traffic in 2006 and important industries, while the Strait of Corfu presents a very different economical context (mainly small-scale ports, few industries, tourism being the main economic activity).

- **Definition of the organizational perimeter**: contrary to the cities, there are no administrative boundaries to a strait. The definition of the boundaries of a strait is a research subject and there is no clear definition nowadays, specifically on the depth of the hinterland and the length of the maritime boundary. An arbitrary decision was made to consider the NUTS3 regions as the hinterland of the strait and as the limit of the maritime boundary. However, some boundaries differ due to local context. In some cases, there was already a defined maritime boundary (according to the IMO Separation Traffic Scheme, such as the Strait of Dover / Pas de Calais).

10 Nomenclature of territorial units for statistics (hierarchical system for dividing up the economic territory of the EU).
de Calais or the Corsica Channel). In some other cases, more relevant hinterland was considered (such as the consideration of the capital region in the Finnish shore of the Gulf of Finland’s Strait, for the economical induced activities). This led to a heterogeneity in the boundaries, to align with the local context of the strait, with arbitrary decisions that are debatable and differences between the straits.

- **Definition of the operational perimeter**: this perimeter is mainly homogeneous for all the straits, except for the inclusion of tourism in the induced economical activities of the Strait of Dover / Pas de Calais, that was not included in the other straits. A functional approach around the strait was considered, which means that not all the emission sources within the boundary are considered (such as waste or resident’s transport). Only the activities induced by the presence of the strait were considered, which led to a selection of representative activities (ports activities, in-land transport linked to the ports, maritime transport, industrial activities, residential and commercial activities). One of the limitation is that not all sources of emissions and activities are taken into account in the straits. Moreover, there might be some overlaps and double counting in the calculations of emissions from tourism in the Strait of Dover / Pas de Calais, as a part of these emissions might be included in the Residential and Commercial emissions from the cities.

- **Definition of a methodological approach**: the approach was built based on scientific works, without being able to evaluate the type of data available and needed. There was then an adjustment of the method depending on the available data, that led to some arbitrary decisions that could be debatable. For example, there is a difference in the emission factors for ferries considered in the local maritime cruise and the ferries considered in the maritime cruise with calls to the strait’s ports, depending on the availability of data such as the number of ferries and the number of passengers transported.

- **Emission factors**: the emission factors for maritime transport considered in the study are taken from the DEFRA database mainly. However, there seems to be large differences between the emission factors in the different databases available at a European level (Base Carbone in France, DEFRA in the UK, LIPASTO in Finland...). It was decided to use only the DEFRA database in all the straits, in order to be consistent in the methodology, but this impacts largely the results in some of the straits (such as the Gulf of Finland’s Strait).

- **Missing data**: due to difficulties accessing some information in the very restricted timeline, some data is missing for some of the straits. This is due to the technicality of the study and the lack of time to reinforce the capacity of the stakeholders and ensure a good comprehension of the stakes and the data to collect. Moreover, with the transit maritime transport, there is variation between the countries on the institutional cooperation and the governance, which led to data missing in some straits (Corsica Channel, Fehmarnbelt, Strait of Otranto). 95% of the data needed was not in direct possession of the PASSAGE partners, meaning that access to data depended on the connection of the partner to its stakeholders and their capacity to collect the data needed. The governance and the network of actors varied greatly between the straits and between the countries.
• **Results**: in some cases, due to missing data the GHG emissions inventories are not complete. In these cases, notation keys (NC – not communicated) were used to indicate that the source of emissions is not negligible, but that it was not accounted for as the data was not collected. This could lead to a misinterpretation of the results. Moreover, it was only possible to distinguish the emissions within and outside the strait’s boundaries in two cases (Strait of Dover / Pas de Calais and Gulf of Finland’s Strait). Finally, there was no inventory management plan implemented for the follow-up and the update of the inventories, even though a robust and transparent tool was provided with the calculations. Training could be provided to ensure a good comprehension of the tool and the calculations and the ability to update the inventory over time.

• **Action plans and decarbonization paths**: The action plans proposed are not always directly linked to the study due to the operational responsibilities of the partners (such as the CCI de Bastia, which has a direct operational responsibility with the Port of Bastia in the Corsica Channel, and the Pas-de-Calais County Council which doesn’t have a direct link with the ports). Moreover, for the decarbonization paths, an indicative top-down logic was used, which means the trajectory was built from national and/or sectoral plans, and was not connected with the action plan.

7. **Recommendations for further work**

To continue the work, the main recommendations are the following:

• Ensure a translation of the deliverables in the native language of the PASSAGE partners and communicate the study to the stakeholders;

• Continue to build cooperation with the stakeholders, to sustain the data collection over time and to allow the inventories to be updated and the missing date to be obtained;

• Improve the emission factors used to reflect the local context and the specificities of each strait and actors (such as the maritime companies operating in the strait);

• Consolidate the data, specifically on transit maritime cruise, by working with the institutional organizations in charge of collecting the data and the coastguards;

• Expand the work through a university thesis or work.
Outcomes of the carbon study at the level of the partnership

1. Main GHG emission sources at strait level

As described earlier, there are 4 main emission source sectors considered in this study:

- **Ports operation**: including energy consumption of the buildings in the port and of the ships in the port areas. This emission source was included in the inventory when available (for the Strait of Dover/Pas-de-Calais). However, the information was not easily accessible in most cases and thus this emission source was incomplete in some cases (Gulf of Finland’s Strait, missing the emissions from the ships in port areas in the Estonian shore, and Corsica Channel, missing the energy consumption in the port’s buildings in the French shore and the emissions from the ships in port areas in the Italian shore) or not considered at all in other cases (Fehmarnbelt, Strait of Otranto and Strait of Corfu). However, the emissions are in most cases small, especially compared to the other sectors considered in this study (less than 2% in the case of the Strait of Dover / Pas-de-Calais and the Gulf of Finland’s Strait).

- **Maritime transport**: including local, international (with calls to the strait’s ports) and transit maritime cruise. This emission source was included in most of the inventories, depending on the local availability of data. The local maritime cruise data was collected from the ports and/or the local maritime companies. The international maritime cruise data was collected from the ports, and the transit maritime cruise was collected from the coastguards. This last one was harder to obtain due to the lack of monitoring of the ships passing through the straits in some cases (Strait of Corfu for example), or due to the difficulty accessing the data due to the institutional relationships and governance (Strait of Otranto for example). The inventory for the Strait of Otranto is incomplete on this sub-sector as no data could be collected. For the other straits, the missing data could be estimated thanks to data collected on the other shore or from publications. This emission source represents 10% to 30% of the emissions within the strait, and up to 64% of the emissions in the Strait of Corfu.

- **In-land traffic**: including road, railway, waterways transport from and to the ports and tunnel transport if appropriate. This emission source was included in all the inventories based on local and national statistics on the quantity of merchandise transported, the number of passengers passing through the ports, the mode of transport and the distance travelled. This emission source represents between 3% and 20% of the emissions within the strait. In the Gulf of Finland’s Strait, the in-land traffic represents only 3%, which can be explained by the characteristics of the strait, which links two capitals with a large alternative transport offer and lower distances travelled. In Fehmarnbelt, the in-land traffic represents almost 20% of the emissions, which can also be explained by the characteristics of the strait which is far from the main cities in both countries, implying higher distances travelled.

- **Induced economical activities**: including industries and residential and commercial activities. This emission source was included in all the inventories based on European data on the emissions from industries (in the EU-ETS database), and on the emissions from residential and commercial activities per capita in each country (as reported to the UNFCCC). This is a major source of emissions representing between 20% and more than 80% of the emissions in the
In the straits of Dover / Pas de Calais, Corsica Channel, Gulf of Finland and Otranto, this is mainly due to the many industries in the strait region.

2. Significance of GHG emissions in straits

The emissions of the PASSAGE straits were 44.0 MtCO$_2$e in 2016, mostly emitted by the Strait of Dover / Pas de Calais (33%). This is equivalent to the emissions of 6.5 million inhabitants in Europe11 and to 1.1% of the European Union emissions12.

\[\text{Emissions of the PASSAGE straits (within the boundaries)} \]

In most of the straits, the induced economical activities (industries & cities) represent a significative part of the GHG emissions within the strait’s boundaries. This is mainly the case in the Strait of Dover / Pas de Calais, the Gulf of Finland’s Strait, Corsica Channel and the Strait of Otranto, where there are many industries that influence the emissions. The cities (residential and commercial activities) are also a main source of emissions in the straits.

The maritime cruise, and specifically the transit maritime cruise, is an important source of emissions for the straits occurring mainly in the Strait of Dover / Pas de Calais and the Gulf of Finland’s Strait. The maritime cruise (local, international and transit maritime cruise) represents 16% of the global emissions of the PASSAGE straits.

Finally, the on-road transportation is also an important source of emissions in the majority of the straits.

However, it’s important to note that, due to data missing, some inventories are not complete (specifically concerning the ports operation and the transit maritime cruise, such as in the straits of Corfu and Otranto).

11 Considering 6.8 tCO$_2$/capita. Source: Service of Observation and Statistics in France, based on data by EDGAR, World Bank, 2015

12 Considering emissions of 4 054 MtCO$_2$e in the European Union in 2014. Source: CAIT Climate Data Explorer, World Resources Institute
3. Comparative table between straits

The following table show the emissions per source of each of the straits. It is important to note that the results cannot be compared between the straits, as they are influenced by the specificities of each strait and the availability of data (as not all the inventories are complete).

But, it is still interesting to note that the emissions mainly reflect the specificities of the straits. The straits with significant levels of traffic (such as the straits of Dover / Pas de Calais, Gulf of Finland or Otranto) also have significant emissions due to the industries, as well as significant road transport. This can be explained by the influence of the traffic and the main ports on the supply of materials to the industries for example.

The straits with a less significant traffic (such as Fehmarnbelt and the strait of Corfu) are mostly impacted by the emissions from the local maritime cruise, the residential and commercial activities in the cities and the in-land transport. The transit maritime cruise and maritime cruise with calls at the strait’s ports are of less importance compared to the other straits.
Table 3 - Comparative table of the emissions of each strait

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary) in tCO2e</th>
<th>Strait of Dover / Pas de Calais</th>
<th>Gulf of Finland’s Strait</th>
<th>Fehmarnbelt</th>
<th>Corsica Channel</th>
<th>Strait of Otranto</th>
<th>Strait of Corfu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy consumption</td>
<td>16 205</td>
<td>26 437</td>
<td>NC</td>
<td>694</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Ships in port areas</td>
<td>206 868</td>
<td>75 590</td>
<td>NC</td>
<td>23 138</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Maritime transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local maritime cruise</td>
<td>725 457</td>
<td>190 435</td>
<td>248 571</td>
<td>73 117</td>
<td>55</td>
<td>214 443</td>
</tr>
<tr>
<td>Maritime cruise with calls to the strait’s ports</td>
<td>21 834</td>
<td>383 583</td>
<td>NC</td>
<td>229 978</td>
<td>31 377</td>
<td>16 435</td>
</tr>
<tr>
<td>Transit maritime cruise</td>
<td>1 702 548</td>
<td>2 839 190</td>
<td>231 081</td>
<td>289 993</td>
<td>NC</td>
<td>/</td>
</tr>
<tr>
<td>Maritime transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road transport</td>
<td>1 688 671</td>
<td>262 653</td>
<td>289 190</td>
<td>367 205</td>
<td>61 466</td>
<td>50 308</td>
</tr>
<tr>
<td>Railway transport</td>
<td>32 951</td>
<td>22 431</td>
<td>3 086</td>
<td>21 415</td>
<td>2 691</td>
<td>/</td>
</tr>
<tr>
<td>Waterways transport</td>
<td>36 345</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Tunnel</td>
<td>64 899</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Induced economical activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industries</td>
<td>8 346 854</td>
<td>4 849 287</td>
<td>0</td>
<td>3 570 531</td>
<td>11 163 390</td>
<td>1 556</td>
</tr>
<tr>
<td>Cities & Towns</td>
<td>1 667 014</td>
<td>1 028 048</td>
<td>710 864</td>
<td>606 029</td>
<td>1 468 585</td>
<td>75 469</td>
</tr>
<tr>
<td>Tourism</td>
<td>37 896</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14 547 543</td>
<td>9 677 653</td>
<td>1 482 791</td>
<td>5 182 101</td>
<td>12 727 564</td>
<td>358 210</td>
</tr>
</tbody>
</table>
4. Responses addressing key challenges for low carbon development of straits: EU policies and governance practices

The European Union emissions represent about 10% of total global emissions. Its Member States have ratified the UNFCCC’s Kyoto Protocol in 1997 and the Paris Agreement in 2015, setting emission targets to limit the global emissions and keep global warming below 2°C.

In its 2050 Low-Carbon Economy Roadmap, the EU aims to cut greenhouse gas emissions to 80% below 1990 levels (with milestones to 40% by 2030 and 60% by 2040), with a contribution from all sectors (power sector, residential and tertiary, industry, transport, agriculture). The Effort Sharing Decision establishes binding annual greenhouse gas emission targets for Member States for the period 2013-2020. These targets concern emissions from most sectors not included in the EU Emissions Trading System (EU-ETS), such as transport, buildings, agriculture and waste. The national emission targets for 2020 have been agreed unanimously and are based on the relative wealth of each Member States (GDP per capita).

The international maritime transport is not included in the national inventories and the Paris Agreement. However, it represents about 2.5% of global greenhouse gas emissions according to the 3rd IMO GHG Study. Moreover, they are predicted to increase between 50% and 250% by 2050, depending on future economic and energy development, which is not compatible with the goal of keeping global temperature increase to below 2°C compared to pre-industrial levels. In order to promote the reduction of emissions by the maritime companies, the European Commission set out a strategy in 2013 to include maritime transport emissions into the EU’s policy for reducing its domestic GHG emissions. The strategy consists in 3 steps:

- Monitoring, reporting and verification of CO₂ emissions from large ships using EU ports
- Greenhouse gas reduction targets for the maritime transport sector
- Further measures including market-based measures in the medium to long term

From 2018, the MRV companies (ships over 5000 gross tonnes loading/unloading cargo/passengers at EU maritime ports) are to monitor and report their related CO₂ emissions, submit to an accredited MRV shipping verifier a monitoring plan and submit the verified emissions through THETIS MRV (a dedicated European Union Information system currently under development by the European Maritime Safety Agency). In parallel, the IMO is implementing a Data Collection System. This system requires every ship of 5000 gross tonnage and above to collect consumption data for each type of fuel oil they use. The aggregated data is reported to the flag State each year and then transferred to an IMO Ship Fuel Oil Consumption Database. An annual report will then be produced by the IMO.

All these initiatives, combined with the national and sectoral plans in each country aiming to reduce greenhouse gas emissions, will impact the straits and lead them into low-carbon development.
5. Recommendations for future actions

a) At the level of the partnership

The carbon study has resulted in several key recommendations for the PASSAGE partners:

- Capitalise on this first work by deepening the knowledge of the strait’s carbon footprint through academic research;

- Consider monitoring the emissions over time, through the update of the inventories;

- Consolidate the governance at a strait level;

- Bring the key findings to the attention of the European Commission.

b) At strait level

The carbon study has resulted in key recommendations that are generic at a strait level:

- **Port Authorities**: it would be interesting for all the ports of the straits to adhere to the WPCI (World Ports Climate Initiative), an initiative launched by the International Association of Ports and Harbors (IAPH) under the auspices of the C40 Cities to reduce the greenhouse gas emissions in the ports. Moreover, the Port Authorities should ask the European Commission for the MRV Shipping Regulation data for all the ships calling at their ports. This would improve and facilitate the data collection for the future update of the inventories and allow the ports to better understand their impact on climate change and their role as transportation and economic centers.

- **Port towns**: it would also be interesting for the cities and towns with a port to include the maritime transport and the port’s emissions in their inventories to have a better understanding of the impact of these activities on the territory and the emissions and to ensure an inclusion of actions linked to these activities in the strategies and action plans to tackle climate change.

- **PASSAGE partners**: it is important to continue and improve the working cooperation with the different stakeholders within the strait (port authorities, coastguards, cities etc.), to facilitate the data collection and the implementation of the action plan to reduce the GHG emissions. Moreover, it is also important to continue and improve the cooperation between the two shores of the strait and between the local and regional institutions in charge of specific topics, to ensure compatible and shared strategies and actions within the strait.
Overview of the carbon study at strait level: Dover / Pas de Calais Strait

This chapter presents the main conclusions of the analysis carried out for Dover / Pas de Calais Strait.

IDENTITY OF THE STRAIT

The strait in a nutshell
The Strait of Dover / Pas de Calais is the area where the Channel meets the North Sea, United Kingdom (UK) and the European continent.

The strait specificities
- One of the most intense maritime traffic (cargo, ferry, fishery) in the world, with almost 20% of the worldwide traffic in 200613, within an extremely tight strait (32 km wide);
- A fixed link: The Channel Tunnel.

Main findings
- 14.5 MtCO\textsubscript{2}e were emitted within the Strait of Dover / Pas de Calais boundary in 2016, equivalent to the average emissions of about 2.2 million inhabitants in Europe14, which is 3.5% of French emissions and 2.9% of British emissions in 201415.
- The industries represent the main emitter of the strait, with 57% of the emissions.
- The maritime transport represents a large part of the emissions, within and outside the strait’s boundary.
- The road transport linked to the goods and passengers passing by the strait’s ports (Dover, Calais, Dunkirk and Boulogne-sur-Mer) and the tunnel is also an important emitter of the strait.

Decarbonization paths
- France and the UK have ambitious targets of reduction of GHG emissions implemented in national strategies:
 - Reduction of emissions by 40% by 2030 and 75% by 2050 compared to 1990 in France
 - Reduction of emissions by 80% by 2050 compared to 1990 in the UK
- Those objectives are broken down by sectors in each country and declined regionally and locally.
- The decarbonization path, based on the national targets applied to the strait’s emissions, results in a reduction of the GHG emissions by 22% by 2030 compared to 2016

13 Atlas Transmanche (https://atlas-transmanche.certic.unicaen.fr/fr/page-382.html)
14 Considering 6.8 tCO\textsubscript{2}/capita. Source: Service of Observation and Statistics in France, based on data by EDGAR, World Bank, 2015
15 Considering emissions of 413 MtCO\textsubscript{2}e in France and 506 MtCO\textsubscript{2}e in the UK in 2014. Source: CAIT Climate Data Explorer, World Resources Institute
1. Analysis of the situation at the strait level

Organizational perimeter

The Kent County Council and the Pas-de-Calais County Council are the PASSAGE administrative authorities, where typologies and local information are available at NUTS 3 level16. The table below presents their main respective features.

<table>
<thead>
<tr>
<th>The Strait of Dover / Pas de Calais</th>
<th>UNITED KINGDOM</th>
<th>FRANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PASSAGE administrative authorities</td>
<td>Kent County Council</td>
<td>Pas-de-Calais County Council</td>
</tr>
<tr>
<td>Inhabitants (million)</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Area (km2)</td>
<td>3 918</td>
<td>6 671</td>
</tr>
<tr>
<td>Density (inhab./km2)</td>
<td>434</td>
<td>220</td>
</tr>
<tr>
<td>Number of district authorities</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>Coastline (km)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Main city</td>
<td>Dover</td>
<td>Calais</td>
</tr>
</tbody>
</table>

The boundaries of the strait were determined as following:

- The maritime boundary is set according to the IMO Separation Traffic Scheme boundary;
- The French border boundary is the Pôle Métropolitain de la Côte d’Opale (in its perimeter of 2018);
- The British border boundary is the East Kent (NUTS 3).

The following map shows the boundaries of the strait considered here:

![Figure 9 - Geographical boundary of the Strait of Dover/Pas-de-Calais (Source: I Care & Consult)](image)

Functional & operational perimeter

Within the strait area, different activities take place and might generate significant GHG emissions, that are not necessarily under the control of the PASSAGE authorities. Furthermore, the perimeter (see map above) is defined to include the port of Dunkirk, due to its significant industrial activity. The section below aims to list the main activities within the considered perimeter. Among these activities, some are similar to any territory emissions

16 Nomenclature of territorial units for statistics (hierarchical system for dividing up the economic territory of the EU).
and not specific to a strait (residential and commercial activities, industries, tourism...); other activities are more specifically generated by the strait:

- Port activities
- Maritime traffic
- Traffic generated by the Channel Tunnel
- Inland traffic (road, rail, waterways) generated by the ports and the tunnel.

The North Sea and English Channel (including the Strait of Dover / Pas de Calais) is designated as a Sulphur Emission Control Area (SECA) and will be a Nitrogen Emission Control Areas (NECA) by 2021.

Both the ports of Dover and Calais are some of the busiest European passenger carriers (more than 5 million/year each). Thus, ferries represent the most important part of the traffic, mainly between the two ports, with more than 27 000 trips in 2016. Furthermore, the total freight traffic is significant with a total of 42 million tonnes cargo/year.

The fishing-related activity is mainly concentrated in the port of Boulogne-sur-Mer, which is the first French fishing harbor (35 000 tonnes/years landed).

Both ports of Boulogne-sur-Mer and Calais are under the responsibility of Hauts-de-France Regional Council, but their exploitation is managed by the SEPD (Society for the Exploitation of the Ports of the Strait).

As mentioned in the introduction, although the port of Dunkirk (known as the Grand Port Maritime de Dunkerque – GPMD) is not part of Pas-de-Calais, it is relevant to include it into the operational perimeter of the strait. Indeed, its industrial activity induces a huge freight traffic of about 46 million tonnes a year.

The main emission sources from the ports itself are the energy consumption, such as electricity, natural gas, gas oil, diesel etc. Each of the ports of the strait have already elaborated a greenhouse gas inventory in the previous years. The port of Dover is a Carbon Trust Standard holder and must pass an assessment every 3 years and prove 5% annual carbon savings. They aim to become a carbon neutral port and have an energy strategy focused partly on investing and implementing renewable energy sources (such as solar and wave energy). They also conducted an Energy saving Opportunity Scheme report as par requirements under the Energy Savings Opportunity Scheme (ESOS) 2014.

The ships, while in port areas (manoeuvring or at berth) are also emitting greenhouse gases through the consumption of fuel in the main and auxiliary engines. The time spent in each mode allows an estimation of the fuel consumption and the GHG emissions in the port areas for each port. For example, the port of Dunkirk gave the following data on time spent on each mode for the ferries:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decelerating</td>
<td>7</td>
</tr>
<tr>
<td>Maneuvering entering</td>
<td>8</td>
</tr>
<tr>
<td>Maneuvering leaving</td>
<td>4</td>
</tr>
<tr>
<td>At berth</td>
<td>45</td>
</tr>
<tr>
<td>Accelerating</td>
<td>7</td>
</tr>
</tbody>
</table>

Time spent in each mode (in min) for ferries in the port of Dunkirk
MARITIME TRAFFIC

The Strait of Dover/Pas de Calais is one of the major transit points in the world maritime traffic. It links the major European ports with the Atlantic and the North Sea, which add up to almost 20% of the world maritime traffic with around 1.4 billion tonnes of freight registered in 2015.

As suggested by the literature review, the sea-based activity is one of the main GHG source of emissions within a strait. The key figures of the main maritime traffic occurring in the Strait of Dover/Pas de Calais are reported below:

- The local maritime traffic concerns the trips, by ferries, between Dover and Calais/Dunkirk. This traffic represents almost 35,000 trips in 2016, mainly between Dover and Calais (more than 27,000 trips in 2016). About 12 million of passengers were transported across the Channel, as well as almost 59 million tonnes of freight. The ferry companies are P&O Ferries and DFDS.

Figure 10 - Repartition of time spent in each mode by the ferries in the Port of Dunkirk (Source: I Care & Consult from data provided by the Port of Dunkirk)

Figure 11 - Type of vessels used on the Calais-Dover route (Source: Directferries.fr and DFDS Seaways)

Figure 12 - Maps of the ferry routes in the Channel (Source: Atlas Transmanche Espace Manche, 2017)
The number of passengers and the number of trips per year were provided by each port (Calais and Dunkirk).

- **The maritime traffic with calls at the strait’s ports** (Dover, Calais, Dunkirk and Boulogne-sur-Mer) concerns all the ships arriving at and leaving from the strait’s ports, except for the ferries that are included in the local maritime transport. This includes all the ships coming from a port outside the strait’s boundary and calling at the strait’s ports, as well as the ships leaving from the strait’s ports and going to a port outside the strait’s boundary. The Port Call Statistics of each port contains information about the type of vessel calling to the port, as well as the port of origin and destination, the weight carried and other information about the size of the ship.

![Calls statistics at each ports](image)

Figure 13 - Repartition of the calls between each ports of the Strait of Dover / Pas de Calais (Source: I Care & Consult from data provided by the Port of Dunkirk, Port of Dover, Port of Calais / Boulogne-sur-Mer and CROSS Gris-Nez)

![Calls statistics at each ports](image)

Figure 14 - Types of goods exchanged in the Channel ports (Source: Pascal Buléon, Atlas-transmanche.certic.unicaen.fr)

The port of Dunkirk is the most important port of the strait in terms of cargo handled, with more than 30 million tonnes in 2016 and more than 2 500 vessels entering or leaving the port (not including the ferries). It mainly concerns Container ships, General Cargo ships and Bulk carriers. The table below presents the different type of vessels and the cargo handled in the port in 2016, based on the Call Statistics from the Port of Dunkirk:
Table 4 - Total cargo handled per type of vessel in the Port of Dunkirk

<table>
<thead>
<tr>
<th>Type of vessel</th>
<th>Total cargo handled in 2016 (in tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk carrier</td>
<td>19 797 187</td>
</tr>
<tr>
<td>Cement carrier</td>
<td>46 802</td>
</tr>
<tr>
<td>Container ship</td>
<td>2 897 563</td>
</tr>
<tr>
<td>General cargo</td>
<td>2 893 336</td>
</tr>
<tr>
<td>Hopper/dredger</td>
<td>242 853</td>
</tr>
<tr>
<td>Hopper/dredger/sand carrier</td>
<td>43 101</td>
</tr>
<tr>
<td>Liquefied gas tanker</td>
<td>457 312</td>
</tr>
<tr>
<td>Liquefied gas/chemical tanker</td>
<td>25 777</td>
</tr>
<tr>
<td>Open hatch cargo ship</td>
<td>144 334</td>
</tr>
<tr>
<td>Refined sugar carrier</td>
<td>60 793</td>
</tr>
<tr>
<td>Refrigerated cargo</td>
<td>50 754</td>
</tr>
<tr>
<td>Roro cargo</td>
<td>1 557</td>
</tr>
<tr>
<td>Tanker</td>
<td>3 804 996</td>
</tr>
<tr>
<td>Not indicated</td>
<td>297 249</td>
</tr>
<tr>
<td>TOTAL</td>
<td>30 763 614</td>
</tr>
</tbody>
</table>

The port of Dover is mainly a Ro-ro port (ferries) and received about 448 calls (leaving and entering the port, except ferries) in 2016. As information about the weight transported by the vessels was unavailable, it was considered that each vessel transported 2 000 tonnes (corresponding to 40 containers of approximately 20 tonnes each and 1200 pallets of approximately 1 tonne each) based on data provided by the Port of Dover.

The port of Calais is also mainly a Ro-ro port (ferries) and presents a less important part of the traffic with about 557 vessels (except ferries) in 2016. The table below presents the different type of vessels and the cargo handled in the port in 2016, based on the Port Call Statistics provided by the Port of Calais:

Table 5 - Total cargo handled per type of vessel in the Port of Calais

<table>
<thead>
<tr>
<th>Type of vessel</th>
<th>Total cargo handled in 2016 (in tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk carrier</td>
<td>307 016</td>
</tr>
<tr>
<td>General dry cargo</td>
<td>847 584</td>
</tr>
<tr>
<td>Tankers</td>
<td>46 358</td>
</tr>
<tr>
<td>Roro</td>
<td>2 806</td>
</tr>
<tr>
<td>Other</td>
<td>17 302</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1 221 066</td>
</tr>
</tbody>
</table>
The *port of Boulogne-sur-Mer* is the first fishing harbour in France. It received more than 300 ships in 2016. Information on the weight transported was made available by the CROSS Gris-Nez\(^{17}\). The traffic also includes passenger ships (cruise) calling at Boulogne-sur-Mer. The table below presents the different type of vessels and the cargo handled in the port in 2016, based on the CROSS Gris-Nez database:

<table>
<thead>
<tr>
<th>Type of vessel</th>
<th>Total cargo handled in 2016 (in tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
<td>4 104</td>
</tr>
<tr>
<td>General dry cargo</td>
<td>757 701</td>
</tr>
<tr>
<td>Passenger ships</td>
<td>3 424</td>
</tr>
<tr>
<td>Other</td>
<td>269 905</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1 035 133</td>
</tr>
</tbody>
</table>

- **The transit maritime cruise** concerns the vessels passing through the Strait of Dover / Pas de Calais without any calls to the strait’s ports. This represents more than 70 000 ships in 2016, mainly General Dry Cargo ships and Container ships, as well as Tankers. These vessels carried about 702 million tonnes of cargo in 2016 mainly coming from and going to Le Havre (France), Southampton (UK), Dublin (Ireland), Rotterdam (Netherlands), Antwerpen (Belgium), Amsterdam (Netherlands), Zeebrugge (Belgium). The Strait of Dover/Pas de Calais is under full radar surveillance and operates a Traffic Separation Scheme, which means that two lanes run through the strait for inward and outward-bound traffic. The Channel Navigation Information Service (CNIS) is jointly operated by the UK and France from the Dover Maritime Rescue Coordination Centre (MRCC) and CROSS Gris-Nez in France. The Strait of Dover / Pas de Calais is also a mandatory reporting area, which means that vessels over 300 gross tonnes must report either to Dover MRCC (South West Lane) or CROSS Gris-Nez (North East Lane), before proceeding through the service area. The CNIS monitors the flow of traffic and detect and report vessels which contravene the International Regulations for Preventing Collisions at Sea 1972 and promotes safety of life at sea, improve counter-pollution measures and provide improved support for enforcement activity.

![Figure 15 - Boundary of area of coverage of CALDOVREP reporting system (Source: “Ship’s Routeing 2010”, IMO)](image-url)

\(^{17}\) Coastguard in charge on the Channel Navigation Information Service (CNIS) and the mandatory reporting for vessels over 300 gross tonnes, for the French side of the Strait of Dover/Pas de Calais.
The database containing every report of vessels on the North-East Lane (with information such as the type of vessel, the weight transported, the previous port of call and the next port of call) was provided by the CROSS Gris-Nez. 33 108 vessels were reported passing through the North-East Lane without any call to the strait’s ports, carrying about 702 million tonnes of goods.

![Type of ships passing through the North East Lane of Dover / Pas de Calais Strait, without any calls to the strait’s ports](image)

Figure 16 - Repartition of ships passing through the North-East Lane of the Strait of Dover / Pas de Calais, without any call to the strait’s ports (Source: I Care & Consult, from data provided by the CROSS Gris-Nez)

Without any information from Dover MRCC, it was considered that the same amount of traffic is travelling on the South-West Lane, which is coherent with the global numbers of traffic in the Channel (about 70 000 ships passing through and 1.4 billion tonnes of goods transported according to the Atlas Transmanche (Pascal Buléon)).

IN-LAND TRAFFIC

In this section, the traffic related to the ports and the Channel Tunnel is considered, as they generate the majority of freight and passengers traffic induced by the strait. Thus, the main transportation hubs are Dover (UK), and Calais, Dunkirk and Boulogne-sur-Mer, as well as Coquelles (France) and Folkestone (UK) for the tunnel.

The Channel Tunnel traffic consists in about 1.6 million trucks in terms of freight as well as 1 million tonnes of goods on trains and in more than 10 million passengers in trains, 2.6 million cars and 54 thousand buses. As demonstrated by the EY study on the economic impacts for the UK of the fixed link between the UK and France\(^\text{18}\), the road and train traffic are mainly related to both near and far economic activities, and the presence of the Channel Tunnel fixed link infrastructure has incurred an increase of both road and train traffics.

Most of the goods arriving and leaving the ports are transported to their next destination by road, both in the UK and in France. The railway network is also an important infrastructure for in-land traffic in both France and the UK. The national share for road and rail transport was used, as well as national statistics on distance based on Eurostat data\(^\text{19}\).

\(^{18}\) The EY French side study is currently in progress on the same base than the Great-Britain one
\(^{19}\) See methodological note in annex
Table 7 - Hypothesis on modal share and distance for in-land traffic based on national statistics

<table>
<thead>
<tr>
<th>Mode</th>
<th>Country</th>
<th>Modal share</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight</td>
<td>France</td>
<td>82%</td>
<td>125 km</td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td>88%</td>
<td>178 km</td>
</tr>
<tr>
<td>Passengers</td>
<td>France</td>
<td>90%</td>
<td>280 km</td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td>91%</td>
<td>130 km</td>
</tr>
<tr>
<td>Railways</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight</td>
<td>France</td>
<td>18%</td>
<td>360 km</td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td>12%</td>
<td>200 km</td>
</tr>
<tr>
<td>Passengers</td>
<td>France</td>
<td>10%</td>
<td>75 km</td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td>9%</td>
<td>40 km</td>
</tr>
</tbody>
</table>

One of the features of the French hinterland is the density of the fluvial network, as it consists in 680 km of canals and rivers within the Nord - Pas-de-Calais (former region perimeter), with a 12 million tonnes of freight traffic in 2010. The Dunkirk port is the main fluvial platform, from which about 3 million tonnes of goods, representing 16% of all goods transiting by the port of Dunkirk, are transiting through Belgium, Netherlands and Germany on waterways. A study was realized by the Port of Dunkirk on the modal share of the goods handled at the port. Those numbers, specific for the Port of Dunkirk, were used in this study: 48% of the goods are transported by road, 31% are carried by trains and 16% are carried on waterways. The national distance was considered for the road and railways transport, and it was considered that the goods were travelling about 100 km by waterways to their next destination, based on the national statistics\(^{20}\).

The following table presents the quantity of goods that were handled in the ports and transported in the hinterland:

Table 8 - Quantity of goods and number of passenger handled in the ports and transported in the hinterland

<table>
<thead>
<tr>
<th>Port</th>
<th>Quantity of goods (tonnes)</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dunkirk</td>
<td>46 708 464</td>
<td>2 914 136</td>
</tr>
<tr>
<td>Dover</td>
<td>27 084 330</td>
<td>12 059 538</td>
</tr>
<tr>
<td>Calais</td>
<td>44 221 715</td>
<td>9 090 694</td>
</tr>
<tr>
<td>Boulogne-sur-Mer</td>
<td>616 367</td>
<td>/</td>
</tr>
</tbody>
</table>

\(^{20}\) See methodological note in annex
The Strait of Dover / Pas de Calais’ inland activities in terms of industry is rich and mainly concentrated in the Boulogne-sur-Mer and Dunkirk port areas.

The Dunkirk port area extends over 7 000 hectares where heavy industries are located: steel industry (ArcelorMittal, the most important complex of Europe), nuclear power plant (EDF) and a methane terminal (Dunkirk LNG, mainly owned by EDF) are the main ones as well as petrochemical industries (Versalis, Polychim, BASF) and aluminium industry (Rio Tinto). The two refineries (SER and Total) are no longer operating.

The methane terminal is operational since 2016 and its activity might be growing in the next years (willingness of the European Commission to secure and diversify the gas supply, possible project of supplying vessel with LNG to mitigate air pollution and GHG emissions ...).

The Boulogne-sur-Mer port area is the first European platform for processing and marketing of fresh and frozen sea products, with about 380 000 tonnes/year manufactured on-site by about 140 companies.

The Dover port area also contains a few industries such as CEMEX, a ready-mix concrete plant.

The territories also present emissions due to the energy consumption in the residential and commercial sectors. Those emissions are estimated based on the population of the strait’s main regions and the national GHG inventory. The territories of the Pôle Métropolitain Côte d’Opale (France) and East Kent (UK, NUTS 3 in Eurostat classification) were considered in this study. They correspond to the territories of the main ports of the strait: Dunkirk, Calais and Boulogne-sur-Mer (Pas-de-Calais) and Dover (East Kent).

Figure 18 - Methane terminal in Dunkirk (Source: EDF)

![Figure 18 - Methane terminal in Dunkirk (Source: EDF)](image)

Figure 19 - Population of the main regions of the Strait of Dover / Pas de Calais (Source: I Care & Consult from data by Eurostat – NUTS 3 and PMCO website21)

![Figure 19 - Population of the main regions of the Strait of Dover / Pas de Calais (Source: I Care & Consult from data by Eurostat – NUTS 3 and PMCO website21)](image)

21 www.pm-cote-opale.fr
Upon the interest of local stakeholders from Dover Strait for the issue of tourism, it was decided to include it in the present study in order to have an estimation of its carbon impact for the strait area, without getting too much in the details of an accurate carbon calculation.

Both territories of Hauts-de-France region and Kent county are attractive for tourists and experienced growth in the tourism sector. Hauts-de-France region estimates that 772 800 tourists from the UK in 2016, who stayed about 1.7 nights in hotels in the region. Kent County estimates that there were about 351 000 visitors from overseas staying in hotels and 958 000 overnight stays in hotels from overseas tourists in 2015.

![Figure 20 - Touristic flows in Hauts-de-France region (Source: Region Hauts-de-France, New Tourism by Hauts-de-France)](image)
Schematic representation of the strait

Figure 21 - Schematic “choreme” representation of the Strait of Dover / Pas de Calais (Source: I Care & Consult)
Geographic representation of the strait

This map presents the main distances considered within the boundary based on the geographic boundary of the strait, as defined in the methodological note. The IMO separation traffic scheme was considered to delimit the maritime boundary of the strait.

Figure 22 - Representation of the geographical boundary of the strait of Dover / Pas de Calais (Source: I Care & Consult)
2. GHG emissions and key priorities for future actions

This section aims to gather the main GHG emissions sources within the strait perimeter. For further information about the calculations, please refer to the Excel file linked to the study available on the library section of PASSAGE website. The emissions are calculated thanks to the data collected from the local stakeholders, existing studies carried out by PASSAGE partners and stakeholders and the literature reviews, and processed by I Care & Consult.

The activities in the Strait of Dover / Pas de Calais emitted 14.5 MtCO\(_2\)e in 2016. The main source of emissions is the induced economical activities with 69% of the total emissions, followed by the maritime transport representing 17% of the emissions, in-land traffic representing 12% and the port operations representing 2%. The emissions are mainly impacted by the industries (induced economical activities), representing 58% of the emissions emitted within the strait.

![Emissions within the Strait of Dover/Pas-de-Calais' boundary](Figure 23 - Repartition of emissions from the Strait of Dover / Pas de Calais (Source: I Care & Consult))

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary)</th>
<th>France</th>
<th>Cross-border</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>Energy consumption</td>
<td>6 543</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ships in port areas</td>
<td>146 732</td>
<td></td>
</tr>
<tr>
<td>Maritime transport</td>
<td>Local maritime cruise</td>
<td></td>
<td>725 457</td>
</tr>
<tr>
<td></td>
<td>Maritime cruise with calls to the strait’s ports</td>
<td></td>
<td>21 834</td>
</tr>
<tr>
<td></td>
<td>Transit maritime cruise</td>
<td></td>
<td>1 702 548</td>
</tr>
<tr>
<td>In-land traffic</td>
<td>Road transport</td>
<td>1 262 596</td>
<td>426 075</td>
</tr>
<tr>
<td></td>
<td>Railway transport</td>
<td>16 796</td>
<td>16 154</td>
</tr>
<tr>
<td></td>
<td>Waterways transport</td>
<td>36 345</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tunnel</td>
<td></td>
<td>64 899</td>
</tr>
<tr>
<td>Induced economical activities</td>
<td>Industries</td>
<td>8 346 854</td>
<td>0 (^{23})</td>
</tr>
<tr>
<td></td>
<td>Cities & Towns</td>
<td>980 425 (^{24})</td>
<td>686 589 (^{25})</td>
</tr>
<tr>
<td></td>
<td>Tourism</td>
<td>8 074</td>
<td>29 822</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>10 804 366</td>
<td>2 514 739</td>
</tr>
</tbody>
</table>

\(^{22}\) www.interregeurope.eu/passage/library

\(^{23}\) In Kent, no industry included in the strait’s perimeter is part of the EU emissions trading system. For a better understanding of these figures, please refer to the methodology of the study.

\(^{24}\) Equivalent of 1.252 tCO\(_2\)e/inhabitant

\(^{25}\) Equivalent of 1.32 tCO\(_2\)e/inhabitant
The emissions due to the strait’s activity but emitted outside of the boundary (due to in-land and maritime transport outside of the boundary) were also estimated. The emissions included are not only the emissions directly generated by a ship or a truck from the moment it enters the strait area until the moment it leaves the strait area: all the emissions generated by the ship or the truck from its point of origin to its point of destination are included. Considering these indirect emissions, the strait is responsible for the emissions of 104 MtCO$_2$e, from which 14% are emitted within the boundary. The main emitter outside of the boundary is the out-boundary emissions from the transit maritime cruise (trips from the port of origin to the Strait of Dover/Pas de Calais, from the strait to the port of destination, and of all vessels passing through the strait without any calls to the strait’s ports), representing 84% of the total emissions (within and outside of boundary).

Table 10 - Direct and indirect emissions from the Strait of Dover / Pas de Calais, per source

<table>
<thead>
<tr>
<th>Emission source (within and outside the strait’s boundary) in tCO$_2$e</th>
<th>Within the strait’s boundary</th>
<th>Outside the strait’s boundary</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy consumption</td>
<td>16 205</td>
<td></td>
<td>16 205</td>
</tr>
<tr>
<td>Ships in port areas</td>
<td>206 868</td>
<td></td>
<td>206 868</td>
</tr>
<tr>
<td>Maritime transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local maritime cruise</td>
<td>725 457</td>
<td></td>
<td>725 457</td>
</tr>
<tr>
<td>Maritime cruise with calls to the strait’s ports</td>
<td>21 834</td>
<td>1 263 069</td>
<td>1 284 903</td>
</tr>
<tr>
<td>Transit maritime cruise</td>
<td>1 702 548</td>
<td>87 466 354</td>
<td>89 168 902</td>
</tr>
<tr>
<td>In-land traffic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road transport</td>
<td>1 688 671</td>
<td>1 001 910</td>
<td>2 690 580</td>
</tr>
<tr>
<td>Railway transport</td>
<td>32 951</td>
<td>42 134</td>
<td>75 085</td>
</tr>
<tr>
<td>Waterways transport</td>
<td>36 345</td>
<td>0</td>
<td>36 345</td>
</tr>
<tr>
<td>Tunnel</td>
<td>64 899</td>
<td></td>
<td>64 899</td>
</tr>
<tr>
<td>Induced economical activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industries</td>
<td>8 346 854</td>
<td></td>
<td>8 346 854</td>
</tr>
<tr>
<td>Cities & Towns</td>
<td>1 667 014</td>
<td></td>
<td>1 667 014</td>
</tr>
<tr>
<td>Tourism</td>
<td>37 896</td>
<td></td>
<td>37 896</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14 547 543</td>
<td>89 773 467</td>
<td>104 321 010</td>
</tr>
</tbody>
</table>

Emissions of the Strait of Dover / Pas de Calais (within and outside the boundary)

Figure 24 - Repartition of emissions from the Strait of Dover/Pas de Calais (direct and indirect emissions) (Source: I Care & Consult)
The emissions from ports concern the emissions from the energy consumption of the ports and from the ships in port areas (manoeuvring and at berth, consuming energy for the main and auxiliary engines). These emissions are occurring within the strait’s boundary. They represent 223 ktCO₂e, 2% of the emissions within the strait’s boundary.

- **Energy consumption**

The energy consumption is the source of 16.2 ktCO₂e, which represents 7% of the emissions from ports’ operations. The main source of emissions in the four ports is the electricity consumption, representing more than 30% of the emissions in the French ports and more than 60% in the Port of Dover. The other main sources are the consumption of gas oil in the Port of Dover, the consumption of fuel oil in the Port of Calais, the consumption of diesel in the Port of Boulogne-sur-Mer and the consumption of natural gas in the Port of Dunkirk.

The Port of Dover is the main emitter of GHG with 9.7 ktCO₂e in 2016, mainly because the emission factor for electricity in the UK is more important than in France (which has a lot of nuclear power, with a low GHG emission factor). Another reason is that the Port of Dover is the major port in terms of passengers (and concentrates both passengers traffic from Dunkirk and Calais).

- **Ships in port areas**

The emissions from ships in port areas represent 196.9 ktCO₂e, which represents 93% of the emissions from ports’ operations.

The time spent at berth represent 77% of the emissions from ships in port areas, because of a longer time (from 45 min / 1h30 for ferries to more than 48h for carriers for example) than the time spent manoeuvring (from a few minutes for the ferries to 3h for the other vessels).

However, in the case of the ferries in the Port of Dunkirk, more precise data was made available concerning the type of engines and power used during the different phases. Thus, even though the manoeuvring phase takes less time than the time spent at berth, the emissions are mostly from the manoeuvring phase (accelerating, decelerating and manoeuvring).
These emissions concern the emissions from the maritime transport within the strait’s boundary. They represent 17% of the emissions within the strait’s boundary.

- **Local maritime cruise**

This source of emissions concerns the ferries navigating between the ports of the straits and occurs only within the strait’s boundary. It represents 725 ktCO\textsubscript{2}e, 30% of the emissions from maritime transport and 5% of the total emissions.

In 2016, more than 12 million passengers travelled between the ports of the Strait of Dover / Pas de Calais (one-way crossing), mainly between Calais and Dover (more than 9 million passengers) and between Dunkirk and Dover (almost 3 million passengers).

- **Maritime cruise with ships calling at the strait’s ports**

This source of emissions concerns all the ships calling at one of the strait’s ports (Calais, Dover, Dunkirk and Boulogne-sur-Mer) travelling to/from a port outside of the strait. It represents 21.8 ktCO\textsubscript{2}e, less than 1% of the emissions from maritime transport. This only includes the part of the trip that is realised within the strait’s boundary. It is important to note that 98% of the emissions from maritime cruise with ships calling at the strait’s ports are occurring outside the strait’s boundary, while 2% are occurring within the strait’s boundary.

Most of the emissions come from the Ports of Dunkirk (more than 2 500 vessels arriving to or departing from the port, mostly coming from and going to Le Havre, Antwerp and Rotterdam) and of Dover (almost 900 vessels, going mostly to Hamburg and Rotterdam and coming from Flushing and Rotterdam). Most of the emissions from the ships calling at the Port of Dunkirk are the bulk carriers, the container ships, the general cargo and the cement carrier, which are the most represented ships in the port.

![Figure 27 - Repartition of emissions from maritime transport with calls to the strait’s ports (Source: I Care & Consult, from data provided by the Port of Dunkirk, the Port of Dover, the Port of Calais and the CROSS Gris-Nez)](image-url)
Transit maritime cruise

The transit maritime cruise is one of the most important sources of emissions in the Strait of Dover / Pas de Calais. It represents 1 702 ktCO₂e in 2016, which is 12% of the emissions within the strait’s boundary. This only includes the part of the trip that is realized within the strait’s boundary. It is important to note that the part of the trip occurring outside the strait’s boundary represents more than 98% of the emissions from maritime cruise with ships calling at the strait’s ports. Considering the emissions within and outside the boundary, 89 169 ktCO₂e are emitted, which represents almost 10% of the worldwide emissions from international shipping. Most of the emissions come from the container ships and the tankers.

Figure 28 - Repartition of emissions from maritime transport with calls to the Port of Dunkirk per type of ship and number of movements per type of vessel (Source: I Care & Consult, from data provided by the Port of Dunkirk)

- Transit maritime cruise

Figure 29 - Repartition of emissions from transit maritime transport per type of ship (Source: I Care & Consult, from data provided by the CROSS Gris-Nez)
These emissions concern the emissions from the in-land transport (road, railway and waterways transport, as well as the Channel Tunnel) within the strait’s boundary. They represent 12% of the emissions within the strait’s boundary.

The road transport is the most important source of in-land traffic emissions and represents 1,689 ktCO$_2$e. The road transport represents 93% of the emissions from in-land traffic (even though only about two third of the weight transported by freight and the passengers travel by road transport). The waterways transport is also an important source of emission on French side and represents 36.3 ktCO$_2$e. The fluvial transport represents 2% of the total in-land traffic emissions, even though 5% of the freight is carried by waterways. The railway transport only represents 33 ktCO$_2$e, 2% of the emissions from in-land traffic for about 23% of the freight transport. This can be explained by the low emission factors of waterways and railways, compared to road transport.

The Channel Tunnel is the second source of in-land traffic emissions. It emitted 65 ktCO$_2$e in 2016, based on the figure provided by the Eurotunnel Group, which represents 3% of the total in-land traffic emissions. This includes the Shuttle, the freight trains and the Eurostar Trains. The rest of the journey (in-land) is included in the road and railway transport.

Concerning the freight traffic, even though the Port of Dunkirk handled more goods than the ports of Calais and Dover, the emissions are lower because of a modal share of railways and waterways more important (31% for railways and 16% for waterways, while Dover and Calais have a railway modal share of 12% and 18% based on national data). The road transport is the most important source of emission and most of the emissions occur within the strait’s boundary.
Concerning the passenger traffic, even though the Port of Dover welcomed more passengers than the port of Calais, the emissions are lower because of lower distance considered in the UK26. The road transport is still the most important source of emissions.

26 See methodological note
This source concerns the emissions from the industries and from the cities and towns (residential and commercial emissions from energy consumption) which occur only within the strait’s boundary. This source of emissions is not specific to a strait territory but can be identified on any territory. It represents 10 052 ktCO₂e, which represents 69% of the total emissions within the strait’s boundary.

- **Industries**

Many industries were identified close to the ports, mainly on the Port of Dunkirk. Only the industries participating to the EU emissions trading scheme were included in the calculation (see methodology of the study for more details). They emitted 8 347 ktCO₂e in 2016. The most important emitter of GHG is the ArcelorMittal site, the most important complex in Europe for steel industry. It represents more than 85% of the emissions from industries within the strait’s boundary.

- **Cities & Towns**

The emissions from the cities and towns (residential and commercial) were estimated based on the number of inhabitants in the NUTS 3 region, which shores correspond to East Kent and the Pôle Métropolitain Côte d’Opale (coast of Pas-de-Calais and city and port of Dunkirk). They emitted about 1 667 ktCO₂e in 2016. It represents 1.25 tCO₂e/inhabitant on the French shore and 1.32 tCO₂e/inhabitant on the English shore.

- **Tourism**

The emissions from the tourism in both regions rise to 37.9 ktCO₂e in 2016. There were more hotel nights in Hauts-de-France than in Kent County, but as the emission factor for electricity is higher in the UK than in France, the impact of tourism on the emissions is more important on the British side of the strait.
3. Decarbonization paths

In the last years, the threat of climate change is being addressed globally by the United Nations Framework Convention on Climate Change (UNFCCC). The EU emissions represent about 10% of total global emissions and its Member States have ratified the UNFCCC’s Kyoto Protocol in 1997 and the Paris Agreement in 2015, setting emission targets to limit the global emissions and keep global warming below 2°C. The EU aims to decarbonise its energy system and cut its greenhouse gas emissions by 80% to 95% by 2050. To achieve this goal, it has set a binding target of reducing emissions by at least 40% compared to 1990 levels by 2030. Many European countries have adopted national programmes aimed at reducing emissions.

France has set ambitious targets through its national low-carbon strategy (published in 2015 and that should be revised by the end of 2018) and its Energy Transition Act. A reduction of 40% of the total greenhouse gas emissions is aimed in 2030 compared to 1990 (and a reduction of 75% of its total emissions in 2050 compared to 1990). Greenhouse gas emissions already decreased by 10.8% between 1990 and 2013 but the rate of reduction must be stepped up in order to achieve the Factor 4 target by 2050. These objectives were disaggregated by sector:

- Transport: reduce the GHG emissions by 29% by 2028 compared to 2013;
- Building sector: reduce the GHG emissions by 54% by 2028 compared to 2013;
- Agriculture and forestry: reduce the GHG emissions by 12% by 2028 compared to 2013;
- Industry: reduce the GHG emissions by 24% by 2028 compared to 2013;
- Energy: stabilize the GHG emissions by 2028 below the 2013 level;
- Waste: reduce the GHG emissions by 33% by 2028 compared to 2013.

![Figure 35 - Evolution of greenhouse gas emissions for France between 1990 and 2013](Source: France National Low-Carbon Strategy, Ministry of Ecology, Sustainable Development and Energy 2015)

These objectives are then declined at a more local scale. At the regional level, Nord - Pas-de-Calais Regional Council (now Hauts-de-France Regional Council) elaborated a Climate-Air-Energy Regional Scheme in 2012 aiming to reduce the GHG emissions by 20% by 2020 compared to 2005. The transportation (freight and passengers), as well as the industries and the residential sector each contribute to about 30% of the emission reduction by 2020. At a regional level, the Third Industrial Revolution (Rev3) was implemented with two objectives: the rise of a low-carbon economy and the creation of new activities and jobs in the region. It is based on 5 pillars: distribution of renewable energies, building producing energy, hydrogen and energy storage, smart grids and innovation in mobility to ensure energy efficiency, with the transversal principles of economy of functionality and circular economy. The main objective is to cover the whole energetic needs of the region with renewable energies, by improving the energy efficiency (multiplicated by two) and reducing the GHG emissions (divided by four) by 2050.

The main cities also adopted commitments regarding their GHG emissions, through their Climate Air Energy Territorial Plan (mandatory for every public institution of intercommunal cooperation of more than 20 000 inhabitants). For example, the Urban District of Dunkirk aims to reduce its GHG emissions by 40% by 2030 and 75% by 2050 compared to 1990, through 9 strategic axes (exemplarity of the cities, mobility, industry, energy, agriculture and natural resources, residential, adaptation to climate change, sensitization of the population, implication of the economical stakeholders).

UNITED KINGDOM

The UK has also set ambitious targets through its national clean growth strategy, published in 2017, following the Climate Change Act, passed in 2008. The aim is to reduce greenhouse gas emissions by at least 80% by 2050, compared to 1990. The UK seems to be on the right path as its GHG emissions have been cut by 42% between 1990 and 2016, while the economy has grown by two thirds. The target has also been broken down for each sector:

- Business and public sector: reduction of the GHG emissions by 30% by 2032 compared to 2017;
- Residential sector: reduction of the GHG emissions by 19% by 2032 compared to 2017;
- Transport: reduction of the GHG emissions by 29% by 2032 compared to 2017;
- Power: reduction of the GHG emissions by 80% by 2032, compared to 2017;
- Land use and agriculture: reduction of the GHG emissions by 26% by 2032 compared to 2017
Figure 36 - UK historic and projected Emissions Intensity Ratio (Source: The Clean Growth Strategy, HM Government 2017)

These objectives are also declined at a more local scale. The Kent Environment Strategy was published in 2016 by Kent County Council and partners, deployed in three themes:

- ‘Building the Foundations for Delivery’: to provide an evidenced understanding of environmental risks and opportunities and building the resource and mechanisms to underpin delivery of actions across the plan.
- ‘Making best use of existing resources, avoiding or minimising negative impacts’: to minimise the impacts of current activities through improving access to environmental services and reducing resource usage across all sectors.
- ‘Toward a sustainable future’: to ensure that the county’s communities, businesses, environment and services are resilient to environmental change, managing future risks and acting on opportunities.

Kent is committed to reduce GHG emissions by 34% by 2020 and 60% by 2030 from a 2005 baseline, while its progress is already a 23% reduction since 2005. The cities and towns such as Dover District Council are also signatories to the Kent Environment Strategy and Climate Local Kent (which aims a 34% reduction in CO₂ emissions by 2020 compared to 2010 levels).
Maritime transport emits around 1 000 MtCO$_2$e annually and is responsible for about 2.5% of global greenhouse gas emissions (3rd IMO GHG Study). Shipping emissions are predicted to increase between 50% and 250% by 2050, depending on future economic and energy developments. According to the 2nd IMO GHG Study, ship’s energy consumption and CO$_2$ emissions could be reduced by up to 75% by applying operational measures and implementing existing technologies. The EU and its Member States have a strong preference for a global approach led by the International Maritime Organization (IMO) to reduce the energy consumption and GHG emissions of the shipping sector.27 The European Commission’s 2011 White Paper on transport suggests that the EU’s CO$_2$ emissions from maritime transport should be cut by at least 40% from 2005 levels by 2050, and if feasible by 50%. However international shipping is not covered by the EU’s current emissions reduction targets.

27 Reducing emissions from the shipping sector, European Commission https://ec.europa.eu/clima/policies/transport/shipping_en
In 2013, a strategy was set out by the Commission to include maritime emissions into the EU’s policy for reducing its domestic GHG emissions. The strategy consists in three steps:

- Monitoring, reporting and verification of CO₂ emissions from large ships using EU ports
- Greenhouse gas reduction targets for the maritime transport sector
- Further measures including market-based measures in the medium to long term

From 2018, the MRV companies (ships over 5000 gross tonnes loading/unloading cargo/passengers at EU maritime ports) are to monitor and report their related CO₂ emissions, submit to an accredited MRV shipping verifier a monitoring plan and submit the verified emissions through THETIS MRV (a dedicated European Union Information system currently under development by the European Maritime Safety Agency).
At the strait level, the application of the national objectives (disaggregated by sector) results in a reduction of the emissions by 22% by 2030, compared to 2016. The following table presents the main hypothesis made to estimate the decarbonization path of the Strait of Dover / Pas de Calais.

Table 11 - Hypothesis for the estimation of the decarbonization path of the Strait of Dover/Pas-de-Calais

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary)</th>
<th>Source of hypothesis</th>
<th>% of reduction</th>
<th>Emissions 2016 (tCO₂e)</th>
<th>Emissions 2030 (tCO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>European Commission’s target on CO₂ emissions from maritime transport</td>
<td>-40% between 2005 and 2050 (corresponding to -12.6% between 2016 and 2030)</td>
<td>223 073</td>
<td>194 966</td>
</tr>
<tr>
<td>Maritime transport</td>
<td>European Commission’s target on CO₂ emissions from maritime transport</td>
<td>-40% between 2005 and 2050 (corresponding to -12.6% between 2016 and 2030)</td>
<td>2 449 840</td>
<td>2 141 160</td>
</tr>
<tr>
<td>In-land traffic</td>
<td>Transport target in France’s SNBC and UK’s national clean growth strategy</td>
<td>FR: -29% between 2013 and 2028 (corresponding to -26.6% between 2016 and 2030)</td>
<td>1 822 866</td>
<td>1 336 426</td>
</tr>
<tr>
<td>Industries</td>
<td>Industry target in France’s SNBC and UK’s national clean growth strategy</td>
<td>FR: -24% between 2013 and 2028 (corresponding to -22.4% between 2016 and 2030)</td>
<td>8 346 854</td>
<td>6 477 159</td>
</tr>
<tr>
<td>Buildings</td>
<td>Building sector target in France’s SNBC and Residential sector target in UK’s national clean growth strategy</td>
<td>FR: -54% between 2013 and 2028 (corresponding to -50.4% between 2016 and 2030)</td>
<td>1 704 910</td>
<td>1 079 902</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>14 547 543</td>
<td>11 290 244</td>
</tr>
</tbody>
</table>

This reduction is due to the actions implemented at all the levels (national, regional, local) and corresponds to the path that is being taken with the actual strategies. The emissions can also be reduced by implementing new actions specifically on the strait’s boundary.

28 Stratégie Nationale Bas Carbone / Low Carbon National Strategy
4. Towards the implementation of action plans

The Strait of Dover / Pas de Calais developed an action plan contributing to the reduction of the strait’s emissions. The action plan has 8 main themes, containing 29 actions:

- Fight against energy scarcity
- Develop low-carbon public procurement
- Develop short and local supply chains
- Develop low-carbon mobility
- Develop low-carbon tourism
- Support low-carbon maritime traffic and port operations
- Support low-carbon in-land traffic
- Strengthen citizen appropriation of low-carbon transition issue

The action plan was also structured in three parts, to take into account the differences in contexts and issues between the two sides of the border:

- Joint cross-border action plan
- French shore’s action plan
- English shore’s action plan

The following table presents the actions reducing emissions from each source.
<table>
<thead>
<tr>
<th>Thematic axes</th>
<th>France</th>
<th>Cross-border</th>
<th>United Kingdom</th>
</tr>
</thead>
</table>
| **Port operations** | • Contribute to the Sustainable Development Charter of the port of Boulogne-sur-Mer – Calais
 | • Create a working group on alternative fuels and energy efficiency of ports
 | • Develop the acknowledgement of low-carbon principles in the port investments | • Support the development of low carbon transport hubs |
| **Maritime traffic** | • Support the modernisation of the fishing fleet
 | • Experiment the exploitation of marine renewable energies on a hybrid professional fishing vessel
 | • Create a working group on low-carbon solutions for fishing sector
 | • Develop a maritime strategy for the county
 | • Lobby for increased regulation of emissions from maritime transportation | |
| **In-land traffic** | • Support the construction of the Seine Nord Europe Canal
 | • Lobby for modal report from road to rail or waterways
 | • Reduce emissions from the use of the Channel Tunnel
 | • Reduce day-to-day car journeys in the strait area
 | • Improve the opportunities to cross the strait without a car
 | • Develop an energy and low emissions strategy
 | • Increase sustainable access to the countryside | |
| **Induced economical activities** | • Reduce emissions from domestic housing
 | • Develop short and local supply chains for food
 | • Develop regional short supply chains through the Port of Dunkirk in the framework of a global economy
 | • Articulate territorial strategies
 | • Reduce emissions from domestic housing
 | • Develop a ‘global cost’ approach for public procurement
 | • Develop short and local supply chains for food
 | • Reduce emissions from small and medium sized businesses (SMES)
 | |
Four actions are also included to allow a good implementation of the plan:

- In the Cross-Border action plan:
 - Create a monitoring committee to coordinate and evaluate the implementation of this action plan
 - Raise awareness among inhabitants of the territory

- In the French shore action plan:
 - Create a political steering committee
 - Contribute to the European Energy Conference
Overview of the baseline study at strait level: Gulf of Finland

This chapter presents the main conclusions of the analysis carried out for the Gulf of Finland’s Strait.

IDENTITY OF THE STRAIT

The strait in a nutshell
The Gulf of Finland is surrounded by three different national economies (Finland, Russia and Estonia) with different maritime transportation structures. Helsinki is regularly cited as a leading city of the low carbon transition. The eastern parts of the Gulf of Finland belong to Russia, and some of Russia’s most important harbours are located near St. Petersburg, not considered in this study. However, the development of maritime transportation in the Gulf of Finland in future is mainly dependent on the development of Russian economy and transportation sector.

The strait specificities
- Both regions are capital cities and leading urban agglomerations in their countries: Tallinn-Harju’s share in Estonia is 60% of GDP and 40% of population; the respective figures for Helsinki-Uusimaa are 38% of GDP and 28% of population.
- The different levels of development between Helsinki and Tallinn result in many asymmetric flows (workers to Helsinki, tourists to Tallinn). Beyond infrastructure and labour market issues, there are interesting opportunities for joint innovation policy efforts given their shared strengths such as in ICT, a dynamic start-up environment and technologically sophisticated public services (OECD, 2013).

Main findings
- 9.7 MtCO\(_2\)e were emitted within the Gulf of Finland’s Strait’s boundary in 2016, equivalent to the average emissions of about 1.4 million inhabitants in Europe, which is 16% of Finnish emissions and 44% of Estonian emissions in 2014.
- The industries represent the main emitter of the strait, with 50% of the emissions.
- The transit maritime cruise represents a large part of the cross-border emissions.
- The ships in port areas represent most of the emissions from the ports operation.

Decarbonization paths
- Finland and Estonia have ambitious targets of reduction of GHG emissions implemented in national strategies:
 - Reduction of emissions by 80% to 95% by 2050 compared to 1990 and become a carbon-neutral society in Finland
 - Reduction of emissions by 70% by 2030 and 80% by 2050 compared to 1990 in Estonia
- The decarbonization path, based on the national targets applied to the strait’s emissions, results in a reduction of the GHG emissions by 19% by 2030 compared to 2016.

29 Based on data provided by Harju County Government
30 Based on data by Laakso et al, 2013
32 Considering emissions of 59.5 MtCO\(_2\)e in Finland and 22.04 MtCO\(_2\)e in Estonia in 2014. Source: CAIT Climate Data Explorer, World Resources Institute
1. Analysis of the situation at the strait level

Organizational perimeter

Helsinki-Uusimaa Regional Council in Finland and Union of Harju County Municipalities in Estonia are involved in governing the strait Gulf of Finland together with City of Helsinki, City of Tallinn, Finnish and Estonian governments and other actors.

Projects include e.g.: FinEst Link, North Sea–Baltic Connector of Regions (NSB CoRe), Baltic Energy Market Interconnection Plan (BEMIP), FinEst Smart Mobility, Twin Port 1 & 2.

<table>
<thead>
<tr>
<th>The Gulf of Finland’s Strait</th>
<th>FINLAND</th>
<th>ESTONIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PASSAGE administrative authorities</td>
<td>Helsinki-Uusimaa Regional Council</td>
<td>Union of Harju County Municipalities</td>
</tr>
<tr>
<td>Inhabitants</td>
<td>1 640 000</td>
<td>582 556</td>
</tr>
<tr>
<td>Land area (km²)</td>
<td>9 097</td>
<td>4 333</td>
</tr>
<tr>
<td>Density (inhab./km²)</td>
<td>180</td>
<td>134</td>
</tr>
<tr>
<td>Number of district authorities</td>
<td>26 municipalities</td>
<td>23 municipalities</td>
</tr>
<tr>
<td>Coastline (km)</td>
<td>300</td>
<td>155</td>
</tr>
</tbody>
</table>

Seascape area / Width 640,000 ha / narrowest distance across the Gulf is 52km from Porkkala to Rohuneeme outside Tallinn

The boundaries of the strait were determined as follows:
- The maritime boundary is set according to the boundaries of the NUTS 3 region (Põhja Eesti and Helsinki-Uusimaa);
- The Finnish border boundary for economical activities is the capital region (Helsinki, Espoo, Vantaa and Kauniainen) and for the in-land transport Helsinki-Uusimaa region (NUTS3);¹⁵;
- The Estonian border boundary is the Põhja-Eesti region (NUTS 3).

The following map shows the boundaries of the strait considered here:

![Geographical boundary of the Gulf of Finland’s Strait](image)

³⁴ Nomenclature of territorial units for statistics (hierarchical system for dividing up the economic territory of the EU).
³⁵ In the Helsinki-Uusimaa Region, the in-land boundary of the strait for economical activities, i.e. industries and cities, is considered as the boundary of the Capital Region, because only data from the Port of Helsinki was available. Including industries from other parts of the Helsinki-Uusimaa Region, especially from the industrial area of Sköldvik (Kilpilahti), would have biased the study, because data wasn’t available from the Port of Sköldvik which is the main port of the area.
Functional & operational perimeter

Within the strait area, different activities take place and might generate significant GHG emissions, that are not under the control of the PASSAGE authorities. The role of the organizations deals mainly within the transport sector and interregional cooperation and their competences include regional planning (land-use) and regional development. Future scenarios of the relationship between Helsinki and Tallinn are published in the “Twin-city in Making - Integration Scenarios for Tallinn and Helsinki Capital Regions”36.

Baltic Sea (and the Gulf of Finland) is designated as a Sulphur Emission Control Area (SECA) and will be a Nitrogen Emission Control Areas (NECA) by 2021. This will likely increase the use of green shipping technology and alternative fuels such as LNG, and in general catalyse technological innovations in the field of green shipping.

The section below aims to list the main activities within the considered perimeter.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{ports.png}
\caption{Ports}
\end{figure}

The Port of Helsinki (including Vuosaari harbour) and the Port of Tallinn (including ports of Muuga and Paldiski) are some of the busiest ports on the Baltic Sea.

The port of Sköldvik (Kilpilahti) (located 50 km east of Helsinki), is the biggest Finnish port by tonnage (industrial area of Kilpilahti: notably petrochemicals activity). However, due to the lack of data availability, it was not possible to include this port in the study. Share of the four biggest ports in the Finnish side of the Gulf of Finland – KotkaHamina, Sköldvik, Helsinki, Hanko – is 95 % of the cargo tonnes of the Finnish ports in the Gulf of Finland. Other ports in the Finnish side of the Gulf of Finland are minor ports.37

Other minor Estonian ports in the Gulf of Finland include: Sillamäe, Kunda, Miiduranna, Vene Balti, Bekker and Paldiski Northern.

In the Gulf of Finland, 17 ports handle oil and oil products: six ports in Finland, six in Estonia and five in Russia. (Holma et al. 2011). Finland’s largest oil port is Sköldvik and port handles 96 % of the Finnish volumes. In Estonia, the largest port is Muuga and ports share of Estonian oil volumes is 82%. Estonia has no crude oil reserves or oil production plants or refineries of its own.

There is almost no fishing activity in the area.

The main emission sources from the ports themselves are the energy consumption, such as electricity, natural gas, gas oil, diesel etc. Each of the ports of the strait has sent the energy consumption in their facilities.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{maritime_traffic.png}
\caption{Maritime Traffic}
\end{figure}

Maritime traffic in the Gulf of Finland has grown remarkably during the 2000s. One of the main cross-border port activity is passengers maritime transport between Helsinki and Tallinn (tourists, workers weekly return trip). Growing transport volumes are connected with increasing interaction between the regions in terms of tourism, business activities, migration, cross-border work, studying and all kinds of social interaction.

As suggested by the literature review, the sea-based activity is one of the main GHG source of emissions within a strait. The key figure of the main maritime traffic occurring in the Gulf of Finland’s Strait are reported below:

The local maritime traffic concerns the trips, by ferries, between Helsinki and Tallinn. This traffic represents almost 11 300 trips in 2016, according to the Finnish Transport Agency. About 8.7 million passengers were transported across the strait, as well as more than 3.8 million tonnes of freight.

The maritime traffic with calls at the strait’s ports (Helsinki and Tallinn) concerns all the ships arriving at and leaving from the strait’s ports, except for the ferries that are included in the local maritime transport. The port call statistics of each port contains information about the type of vessel calling to the port, as well as the port of origin and destination, the weight carried and other information about the size of the ship.

The table below presents the different types of vessels and the cargo handled in the port in 2016, based on the call statistics from the Port of Helsinki, excluding the local maritime cruise (between Helsinki and Tallinn) that is treated above.

Table 13 - Total cargo handled per type of vessel in the Port of Helsinki

<table>
<thead>
<tr>
<th>Type of vessel</th>
<th>Total cargo handled in 2016 (in tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container ships</td>
<td>3 267 719</td>
</tr>
<tr>
<td>Roro</td>
<td>3 549 664</td>
</tr>
<tr>
<td>Dry cargo ships</td>
<td>896 935</td>
</tr>
<tr>
<td>Passenger ships & ferries</td>
<td>3 770 195</td>
</tr>
<tr>
<td>Tankers</td>
<td>133 860</td>
</tr>
<tr>
<td>Tugs</td>
<td>1 290</td>
</tr>
<tr>
<td>Barges</td>
<td>1 257</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11 620 919</td>
</tr>
</tbody>
</table>

In total, the port of Helsinki handled more than 11.6 million tonnes of freight (including freight between Helsinki and Tallinn) and almost 12.4 million passengers in 2016 representing 8 481 ships calling at the port (including passengers between Helsinki and Tallinn). The main types of ships are passenger ferries, roro and container ships.

The table below presents the different type of vessels and the cargo handled in the port in 2016, based on the key figures of the Port of Tallinn, excluding the local maritime cruise between Tallinn and Helsinki that is treated above.
In total, the port of Tallinn handled more than 20.1 million tonnes of freight (mostly in liquid bulk, roro cargoes and dry bulk carriers, including freight between Helsinki and Tallinn) and almost 10.2 million passengers in 2016 representing 7 492 ships calling at the port.

- The transit maritime cruise concerns the vessels passing through the Gulf of Finland’s Strait without any calls to the strait’s ports. This represents more than 39 500 ships in 2016, mainly general dry cargo ships and tankers.

The Gulf of Finland is under full radar surveillance and operates under a Traffic Separation Scheme, which means that two lanes run through the strait for inward and outward-bound traffic. Vessel traffic in the area is also monitored by means of radar and the AIS-system. Estonia and Finland have also implemented mandatory ship reporting systems in their territorial waters outside their VTS area. Each vessel over 300 gross tonnes must report either to Tallinn Traffic, Helsinki Traffic or St. Petersburg Traffic before proceeding through the service area.

The database containing every report of vessels on the Estonian side (with information such as the type of vessel and the next port of call) was provided by the Estonian Maritime Administration. More than 39 500 vessels were reported passing through the Gulf of Finland’s Strait without any calls to the strait’s ports (Helsinki and Tallinn).
In this section, the traffic related to the ports are considered, as they induced the majority of freight and passengers induced by the strait.

One of the feature of the Gulf of Finland is the access to Russia. There are several possible changes in transport corridors and recomposition. Rail Baltica is a greenfield rail transport infrastructure project (EU TEN-T) with a goal to integrate the Baltic States in the European rail network. It will connect Tallinn, Pärnu, Riga, Panevežys, Kaunas, Vilnius, Warsaw.

Most of the goods are transported to their next destination by road in Finland and in Estonia. The railway network is also an important infrastructure for in-land traffic in both Finland and Estonia. The national share for road and rail transport was used, as well as national statistics on distance based on Eurostat data.

However, the Helsinki Region Transport Authority HSL has made a survey in 2015 for passengers coming to the harbour in Helsinki. The results from this survey were used to estimate the modal share of passengers as well as the average distance travelled by the main type of transport.

![Figure 43 - Map of the transport corridors](image)

![Figure 44 - Modal share of passengers coming to the port of Helsinki (Source: I Care & Consult, based on the survey by HSL) (image)]

<table>
<thead>
<tr>
<th>Mode</th>
<th>Country</th>
<th>Modal share</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freight</td>
<td>Finland</td>
<td>74%</td>
<td>120 km</td>
</tr>
<tr>
<td></td>
<td>Estonia</td>
<td>67%</td>
<td>90 km</td>
</tr>
<tr>
<td>Passengers</td>
<td>Finland (car)</td>
<td>44%</td>
<td>88 km</td>
</tr>
<tr>
<td></td>
<td>Finland (taxi)</td>
<td>6%</td>
<td>20 km</td>
</tr>
<tr>
<td></td>
<td>Finland (bus)</td>
<td>17%</td>
<td>83 km</td>
</tr>
<tr>
<td></td>
<td>Estonia</td>
<td>98%</td>
<td>2 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>Country</th>
<th>Modal share</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road transport</td>
<td>Freight</td>
<td>Finland</td>
<td>74%</td>
</tr>
<tr>
<td></td>
<td>Estonia</td>
<td>67%</td>
<td>90 km</td>
</tr>
<tr>
<td></td>
<td>Finland (car)</td>
<td>44%</td>
<td>88 km</td>
</tr>
<tr>
<td></td>
<td>Finland (taxi)</td>
<td>6%</td>
<td>20 km</td>
</tr>
<tr>
<td></td>
<td>Finland (bus)</td>
<td>17%</td>
<td>83 km</td>
</tr>
<tr>
<td></td>
<td>Estonia</td>
<td>98%</td>
<td>2 km</td>
</tr>
</tbody>
</table>
The following table presents the quantity of goods that were handled in the ports and transported in the hinterland, based on data provided by the ports:

Table 16 - Quantity of goods and number of passengers handled in the ports and transported in the hinterland

<table>
<thead>
<tr>
<th>Port</th>
<th>Quantity of goods (tonnes)</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helsinki</td>
<td>11 621 000</td>
<td>11 974 000</td>
</tr>
<tr>
<td>Tallinn</td>
<td>20 118 500</td>
<td>10 173 000</td>
</tr>
</tbody>
</table>

INDUSTRIES

Cross-border trade and production have also increased rapidly during the last 10 years, for example influenced by Finnish manufacturing enterprises that have relocated activities to Estonia. Estonia’s economy is highly export-oriented. Manufacturing of machinery and equipment, the wood industry and food and beverage manufacturing have the highest share of the country’s industry. Finland’s economy is also export-oriented with a share of services 70% of GDP, industry 27% and primary production 3%. The main economic activities include for example wholesale and retail trade, transportation and storage, information and communication, real estate activities, electrical and electronic industry, chemical industry, metal industry and paper industry.

More than 2,000 vessels continuously transport different kinds of cargoes in the Baltic Sea. The biggest share of the cargo is liquid bulk, i.e. various oil products, crude oil and chemicals. The major part of the transport goes through the Russian ports and terminals, i.e. Ust-Luga and Primorsk. The annual volume of the oil transport in the Gulf of Finland is about 160 million tonnes and the oil transportation is envisaged to grow significantly.

The main emitting industries in Tallinn are various boiler houses and a power plant. The boiler houses are functioning with natural gas and light fuel oil as reserve, while the Tallinna Elektrijaam power plant process is based on the energy from domestic wood chips and peat. The main GHG sources in Helsinki capital area are heating 59%, traffic 24%, electricity 13%, industry and machinery 2% and waste treatment 2%. Many industries are located in Helsinki, Vantaa and Espoo. The most important emitter is the Hanasaari B power plant in Helsinki. The data that has been used to calculate the emissions of the industries comes from the EU emissions trading system.

38 Statistics Finland, Annual national accounts. http://tilastokeskus.fi/tl/ytpp/index_en.html
The regions of Helsinki – Uusimaa (Finland) and Põhja – Eesti (Estonia) also present emissions due to the energy consumption in the residential and commercial sectors. Those emissions are estimated based on the population of the strait’s main regions and the national GHG inventory.

![Population of the strait's regions](image)

Figure 46 - Population of the main regions of the Gulf of Finland's Strait (Source: I Care & Consult from data by Eurostat – NUTS 3)

The Helsinki Capital Region includes the capital city of Helsinki and neighbouring cities of Espoo, Vantaa and Kauniainen. These municipalities have ambitious carbon neutrality goals as the cities of Espoo and Vantaa are aiming at carbon neutrality by 2030 and the City of Helsinki by 2035. In addition, the Helsinki-Uusimaa Regional Programme sets a target for the whole Helsinki-Uusimaa region to become carbon neutral by 2035. National target is to reduce GHG emissions by 80% to 95% from the year 1990 level by 2050. Phasing out coal will be especially challenging for Helsinki, as coal provides about one-third of its electricity and about 60% of the district heating\(^{41}\).

In 2013, GHG emissions in Estonia totalled 21.8 million tons, which is 45.7% lower compared to the base-year level of 1990. However, Estonia is still among the top three per capita and per GDP greenhouse gas emitters in Europe – mainly due to its carbon and energy-intensive oil shale based energy generation sector, rapid growth in road freight transport and car use, low energy efficiency of the new vehicle fleet and the high energy consumption of buildings. Still, the average carbon footprint of the Estonian electricity has decreased to 0.91 kg CO\(_2\) per kWh (Kallaste, 2014).

Schematic representation of the strait

Figure 47 - Schematic “choreme” representation of the Gulf of Finland’s Strait (Source: I Care & Consult)
Geographic representation of the strait

This map presents the main distances considered within the boundary based on the geographic boundary of the strait, as defined in the methodological note. The NUTS3 regions were considered to delimit the maritime boundary of the strait.

Figure 48 - Representation of the geographical boundary of the Gulf of Finland’s strait (Source: I Care & Consult)
2. GHG emissions and key priorities for future actions

This section aims to gather the main GHG emissions sources within the strait perimeter and not all the emissions of the region. All the calculations can be seen in the Excel file linked to this study.

The latter are calculated thanks to the data collected from the local stakeholders, existing studies carried out by the Helsinki-Uusimaa Regional Council and Union of Harju County Municipalities and the literature reviews, and processed by I Care & Consult.

The Gulf of Finland’s Strait emitted 9.7 MtCO$_2$e in 2016. The main source of emission is the induced economical activities with 61% of the total emissions, followed by the maritime transport with 35% of the total emissions, the in-land traffic representing 3% and the port operations representing 1%. The emissions are mainly impacted by the industries and the transit maritime cruise. It is important to note that some emission sources were not estimated based on a lack of data (such as the emissions from ships in port areas in Tallinn).

Emissions within the Gulf of Finland’s Strait’s boundary

![Diagram with emission sources]

Table 17 - Repartition of emissions from the Gulf of Finland’s Strait, per source

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary)</th>
<th>Finland</th>
<th>Cross-border</th>
<th>Estonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>Energy consumption</td>
<td>14 819</td>
<td>11 618</td>
</tr>
<tr>
<td></td>
<td>Ships in port areas</td>
<td>75 590</td>
<td>NC</td>
</tr>
<tr>
<td>Maritime transport</td>
<td>Local maritime cruise</td>
<td>190 435</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maritime cruise with calls to the strait’s ports</td>
<td>383 583</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transit maritime cruise</td>
<td>2 839 190</td>
<td></td>
</tr>
<tr>
<td>In-land traffic</td>
<td>Road transport</td>
<td>178 520</td>
<td>84 132</td>
</tr>
<tr>
<td></td>
<td>Railway transport</td>
<td>12 279</td>
<td>10 152</td>
</tr>
<tr>
<td>Induced economical activities</td>
<td>Industries</td>
<td>4 631 624</td>
<td>217 663</td>
</tr>
<tr>
<td></td>
<td>Cities</td>
<td>786 120</td>
<td>241 928</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>5 698 953</td>
<td>3 413 207</td>
</tr>
</tbody>
</table>
It is important to note that pan-European emission factors were used, as described in the methodological note. However, the Finnish emission factors\(^\text{42}\) could also be used. In this case, the emissions are equal to 7.1 MtCO\(_2\)e (instead of 9.7 MtCO\(_2\)e), meaning a reduction of 27\%, mainly due to a reduction of the emission factors of tankers and cargo ship in the transit maritime cruise. This means that the share of the maritime transport in the inventory is reduced to 12\%. Nevertheless, the order of magnitude is still the same.

The emissions due to the strait’s activity but emitted outside of the boundary (due to in-land and maritime transport outside of the boundary) were also estimated. Considering these indirect emissions, the strait is responsible for the emissions of 15.1 MtCO\(_2\)e, from which 64\% are emitted within the boundary. It is important to note that some of the indirect emission sources could not be estimated due to lack of information (such as the out-boundary emissions from transit maritime cruise). The main emitter outside of the boundary is the out-boundary emissions from the maritime cruise with calls to the strait’s ports (Helsinki and Tallinn).

Table 18 - Direct and indirect emissions from the Gulf of Finland’s Strait, per source

<table>
<thead>
<tr>
<th>Emission source (within and outside the strait’s boundary) in tCO(_2)e</th>
<th>Within the strait’s boundary</th>
<th>Outside the strait’s boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>Energy consumption</td>
<td>26 437</td>
</tr>
<tr>
<td></td>
<td>Ships in port areas</td>
<td>75 590</td>
</tr>
<tr>
<td>Maritime transport</td>
<td>Local maritime cruise</td>
<td>190 435</td>
</tr>
<tr>
<td></td>
<td>Maritime cruise with calls to the strait’s ports</td>
<td>383 583</td>
</tr>
<tr>
<td></td>
<td>Transit maritime cruise</td>
<td>2 839 190</td>
</tr>
<tr>
<td>In-land traffic</td>
<td>Road transport</td>
<td>262 653</td>
</tr>
<tr>
<td></td>
<td>Railway transport</td>
<td>22 431</td>
</tr>
<tr>
<td>Induced economical activities</td>
<td>Industries</td>
<td>4 849 287</td>
</tr>
<tr>
<td></td>
<td>Cities</td>
<td>1 028 048</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>9 677 653</td>
</tr>
</tbody>
</table>

Figure 50 - Repartition of emissions from the Gulf of Finland’s Strait (direct and indirect emissions) (Source: I Care & Consult)

\(^{42}\) http://lipasto.vtt.fi/yksikkopastot/indexe.htm
These emissions concern the emissions from the energy consumption of the ports and from the ships in port areas (manoeuvring and at berth, consuming energy for the main and auxiliary engines). These emissions are occurring within the strait’s boundary. They represent 1% of the total emissions within the strait’s boundary.

- **Energy consumption**

The energy consumption is the source of 26.4 ktCO₂e, which represents 26% of the emissions from ports operation.

The Port of Helsinki is the main emitter of GHG with 14.8 ktCO₂e in 2016, mainly because of the consideration of various emission sources such as the working machines and the rubber wheeled traffic in the port. The main source of emission is the electricity consumption in the port of Tallinn, representing more than 90% of the emissions, the emission factor for electricity in Estonia being more important than in Finland (mainly because of the use of coal to produce electricity in Estonia).

The main source of emission in the Port of Helsinki are the rubber wheeled traffic and the working machines, followed by electricity and heating.

- **Ships in port areas**

The emissions from ships in port areas represent 75.6 ktCO₂e for the Port of Helsinki, which represents 74% of the emissions from ports operation. It is important to note that, as no information were provided on time spent in the port areas by the Port of Tallinn, the emissions from the ships in port areas were not estimated.

The Port of Helsinki estimated the GHG emissions produced in the port area, based on information on the ship type, the fuel, the engine type, the utilization of the main engines, the time spent on berth with auxiliary engines and whether the vessel uses onshore electricity while on berth or not. The ships while in port areas are an important source of emissions for the Port of Helsinki. They represent more than 80% of the emissions in the port area of Helsinki (compared to the rubber wheeled traffic and the working machines, included in the energy consumption of the port).
MARITIME TRAFFIC

These emissions concern the emissions from the maritime transport within the strait’s boundary. They represent 35% of the total emissions.

- **Local maritime cruise**
 This source of emissions concerns the ferries and other maritime cruise navigating between Helsinki and Tallinn and occurs only within the strait’s boundary. It represents 190 ktCO₂e, 6% of the emissions from maritime transport. In 2016, more than 8.7 million passengers travelled between the ports of Helsinki and Tallinn and more than 3.8 million tonnes of freight.

- **Maritime cruise with ships calling at the strait’s ports**
 This source of emissions concerns all the ships calling at each of the strait’s ports (Helsinki and Tallinn) travelling to a port outside of the strait. It represents 383.6 ktCO₂e, 11% of the total emissions from maritime transport. This only includes the part of the trip that is realized within the strait’s boundary. It is important to note that the part of the trip occurring outside the strait’s boundary represents more than 90% of the emissions from maritime cruise with ships calling at the strait’s ports (including the part within and outside the strait).

Most of the emissions come from the Port of Tallinn (more than 6 600 vessels arriving to or departing from the port, excluding the local maritime cruise). Most of the emissions from the ships calling at the Port of Tallinn are the passenger ships, the cruise ships and the ro-ro ships, as well as the oil tankers and chemical/oil tankers. The main emissions from the Port of Helsinki (more than 5 600 vessels) come from the passenger ferries, the cruise ships, the ro-ro ships and the container ships.

![Figure 52 - Repartition of emissions from maritime transport with calls to the strait’s ports (Source: I Care & Consult, based on data provided by the ports)](image)

![Figure 53 - Repartition of emissions from maritime transport with calls to the strait’s ports per type of ship (Source: I Care & Consult, based on data provided by the ports)](image)
It is important to note that, with the Finnish emission factors, the results are quite different. In this case, the emissions from the maritime cruise with calls at the ports of Helsinki and Tallinn are quite similar (about 71 ktCO\textsubscript{2}e for each port). In the port of Helsinki, emissions are mainly due to the roro ships and the passenger ferries and in the port of Tallinn, emissions are mainly due to the roro ships, as shown in the figures below. This is mainly due to the hypothesis used to estimate the emission factors, depending on the consumption rate of the ship and the average number of passengers and/or tonnage considered on board.

It is important to note that, due to lack of information, the out-boundary emissions from transit maritime cruise could not be estimated. It is also important to note that only the Estonian Maritime Administration provided information, which means that the vessels reporting to the Finnish side of the strait were not taken into account. To provide a complete inventory, the figures from the Estonian Maritime Administration were doubled to account for the Finnish side of the strait. A publication from the Finnish Environment Institute indicates that 36 444 vessels passed through the mid-point of the Gulf of Finland in 2014, which is coherent with the data received by the Estonian Maritime Administration (39 500 ships).
Most of the emissions come from the cargo ship, the passenger ships and the tankers, representing more than 90% of the emissions from the transit maritime cruise.

![In-boundary emissions from the transit maritime cruise](image)

Figure 56 - Repartition of emissions from transit maritime transport per type of ship (Source: I Care & Consult, from data provided by the Estonian Maritime Administration)

IN-LAND TRAFFIC

These emissions concern the emissions from the in-land transport (road and railway transport) within the strait’s boundary. They represent 3% of the total emissions.

The road transport is the most important source of in-land traffic emissions and represents about **263 ktCO₂e**. The road transport represents 92% of the emissions from in-land traffic. The railway transport (including tramways) is the second source of in-land traffic emissions and represents **22.4 ktCO₂e**.

Concerning the freight traffic, even though the Port of Tallinn handled almost twice as many goods as the Port of Helsinki, the emissions are similar because of a shorter travel distance in Estonia. The road transport is the most important source of emission and most of the emissions occur within the strait’s boundary.

![Emissions from in-land traffic of freight in the Gulf of Finland](image)

Figure 57 - Emissions from in-land traffic of freight in the Gulf of Finland’s Strait (Source: I Care & Consult)
Concerning the passenger traffic, the Port of Helsinki welcomed more passengers than the Port of Tallinn, and consequently, the emissions are higher. Moreover, the distance travelled for the Port of Tallinn is lower due to the distance to the capital figure used in the methodology. In the case of the port of Helsinki, data from a survey was considered, to ensure the distance better reflected the reality. The road transport (cars) is the most important source of emission in Finland.

![Emissions from in-land traffic of passengers in the Gulf of Finland's Strait](Source: I Care & Consult)

INDUCED ECONOMICAL ACTIVITIES

This source concerns the emissions from the industries and from the cities (residential and commercial emissions from energy consumption) which occur only within the strait’s boundary. It represents 5 877 ktCO$_2$e, which represents 61% of the total emissions.

- **Industries**

 Many industries were identified close to the Ports of Tallinn and Helsinki. They emitted 4 849 ktCO$_2$e in 2016.

 The most important emitter of GHG on the Finnish side of the strait is the *Hanasaari B* power plant, producing electricity and heat from coal and wood pellets in Helsinki.

 The most important emitter of GHG on the Estonian side of the strait is the *Mustamäe Katlamaja* site, the most important boiler house in Tallinn. It represents more than 46% of the emissions from industries within the strait’s boundary.
Cities

The emissions from the cities were estimated based on the number of inhabitants in the NUTS 3 region which correspond to the strait (Helsinki Capital Region and Põhja – Eestl). They emitted about 1028 ktCO₂e in 2016.

![Emissions from the induced economical activity (residential and commercial) in the strait's regions](image)

76% FIN (Helsinki - Uusimaa)
24% EST (Põhja - Eestl)

Figure 60 - Emissions from the Gulf of Finland’s Strait’s regions (Source: I Care & Consult)
3. Decarbonization paths

In the last years, the threat of climate change is being addressed globally by the United Nations Framework Convention on Climate Change (UNFCCC). The EU emissions represent about 10% of total global emissions and its Member States have ratified the UNFCCC’s Kyoto Protocol in 1997 and the Paris Agreement in 2015, setting emission targets to limit the global emissions and keep global warming below 2°C. The EU aims to decarbonize its energy system and cut its greenhouse gas emissions by 80% to 95% by 2050. To achieve this goal, it has set a binding target of reducing emissions by at least 40% compared to 1990 levels by 2030. Many European countries have adopted national programs aimed at reducing emissions.

FINLAND

The Climate Change Act (609/2015) that entered into force in June 2015 established a framework for the long-term and cost-effective planning and monitoring of climate policy in Finland with the aim of reducing anthropogenic emissions of greenhouse gases into the atmosphere, mitigating climate change, and adapting to climate change through national actions. The act sets as the long-term target reducing greenhouse gas emissions by a minimum of 80% by 2050 compared to 1990 levels.

Finland’s binding target is to cut emissions by 39% in the non-ETS sector by 2030 compared to 2005 and a reduction of 43% in the emissions trading sector is agreed in the EU’s 2030 package. The National Energy and Climate Strategy specifies the objectives and the key measures to achieve the binding emission reduction targets in the effort sharing sector by 2030.

Greenhouse gas emissions not included in the Emission Trading Scheme

![Diagram showing predicted greenhouse gas emissions in Finland between 2005 and 2030.](image)

Figure 61 - Predicted evolution of greenhouse gas emissions of Finland between 2005 and 2030 (Source: Finnish Climate Policy – towards a low-carbon and energy-efficient future, Ministry of the Environment, Ministry of Agriculture and Forestry and Ministry of Employment and the Economy, 2015)
The Government Programme of Prime Minister Sipilä also set ambitious targets in the energy sector. It aims for increasing the share of renewable energy to over 50% of end consumption, increasing self-sufficiency to over 55%, phasing out coal use in energy production, halving the domestic use of imported oil, and bringing the share of renewable transport fuels up to 40% (23.5% of the fuel energy content). An effort will be made to achieve all this by 2030. In the case of the transport sector, this means a reduction of the traffic emissions by some 50% by 2030 compared to the situation in 2005.

Moreover, Finland has set an ambitious long-term goal of a carbon-neutral society.

Finally, the Government Report on the National Energy and Climate Strategy for 2030, published in 2017, emphasizes the crucial role of the municipalities in attaining the emissions targets in the effort sharing sector. The municipalities’ decisions related to land use, transport and services, business policy, energy issues and procurement have an impact on greenhouse gas emissions. Sustainable public procurement both supports cutting emissions and offers possibilities for developing the domestic market.

As a result, the Helsinki-Uusimaa Regional Council published in 2018 their Regional Programme 2.0, covering a period from 2018 to 2021. The Helsinki-Uusimaa Region aims to become a carbon-neutral region by 2035 as part of the vision “Helsinki Region 2050 – Cool & the most vibrant region in Europe”. The work includes drafting of a Roadmap for a Carbon-neutral Helsinki-Uusimaa Region began in 2018. The Region proposes to reduce the greenhouse gas emissions by 80% and offset the remaining 20% through other projects to reduce emissions or increase carbon sinks. The three biggest cities of the region, Helsinki, Espoo and Vantaa have set the goal of achieving carbon-neutrality by 2035 or earlier. Porvoo, Lohja, Hyvinkää, Hanko, Raasepori, Inkoo and Siuntio are part of the Hinku project which has the objective to reduce GHG emissions in their area by 80% by 2030 compared to the GHG emissions for 2007. These ten municipalities cover 80% of the population of the entire Helsinki-Uusimaa. The municipalities of Helsinki, Espoo and Vantaa, have also signed the Covenant of Mayors, with an objective of reduction of 20% by 2020. Helsinki-Uusimaa Regional Council takes part in the Compact of States and Regions.

The City of Helsinki has already achieved a reduction of 25% of its GHG emissions between 2015 and 1990.

ESTONIA

The Resolution of the Riigikogu, signed in 2017, presents the General Principles of Climate Policy until 2050. The long-term target of Estonia is to reduce the emissions of greenhouse gases by 2050 by 80% in comparison with the emission levels of 1990. As the country moves towards this target, emissions will be reduced by about 70% by 2030 and by 72% by 2040 in comparison with the 1990 emission levels.

A National Renewable Energy Action Plan was also published, in 2010, establishing a target of 25% of renewable energy in final consumption by 2020.

In 2013, GHG emissions in Estonia were 45.7% lower than the base-year level of 1990, which means that Estonia is well ahead of the Kyoto target.

The projections made in Estonia’s Second Biennial Report under the UNFCCC give an indication of future trends in GHG emissions in Estonia, given the policies and measures implemented and adopted within the current national climate policies (scenario with additional measures):
Table 19 - Estonian sectoral objectives in 2030, compared to 2013

<table>
<thead>
<tr>
<th>Sector</th>
<th>Emissions 2013</th>
<th>Emissions 2030</th>
<th>Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy production and manufacturing industries</td>
<td>16 086.5 ktCO$_2$e</td>
<td>11 142.6 ktCO$_2$e</td>
<td>-31%</td>
</tr>
<tr>
<td>Transport</td>
<td>2 241.9 ktCO$_2$e</td>
<td>1 437.9 ktCO$_2$e</td>
<td>-36%</td>
</tr>
<tr>
<td>Other sectors (commercial, residential, agriculture)</td>
<td>672.0 ktCO$_2$e</td>
<td>602.2 ktCO$_2$e</td>
<td>-10%</td>
</tr>
</tbody>
</table>

A total reduction of 26% is projected between 2013 and 2030 with the actual policies (including the additional measures).

The City of Tallinn joined the Covenant of Mayors in 2009 and a Sustainable Energy Action Plan 2011-2021 was established. The objective is to reduce the CO$_2$ emissions in Tallinn by 20% by 2021 compared to 2007. The objective established in Tallinn Environmental Strategy 2030 is to reduce CO$_2$ emissions by 40% in comparison to 2007.

INTERNATIONAL SHIPPING SECTOR

Maritime transport emits around 1 000 MtCO$_2$e annually and is responsible for about 2.5% of global greenhouse gas emissions (3rd IMO GHG Study). Shipping emissions are predicted to increase between 50% and 250% by 2050, depending on future economic and energy developments. According to the 2nd IMO GHG Study, ship’s energy consumption and CO$_2$ emissions could be reduced by up to 75% by applying operational measures and implementing existing technologies. The EU and its Member States have a strong preference for a global approach led by the International Maritime Organization (IMO) to reduce the energy consumption and GHG emissions of the shipping sector43. The European Commission’s 2011 White Paper on transport suggests that the EU’s CO$_2$ emissions from maritime transport should be cut by at least 40% from 2005 levels by 2050, and if feasible by 50%. However, international shipping is not covered by the EU’s current emissions reduction targets.

In 2013, a strategy was set out by the Commission to include maritime emissions into the EU’s policy for reducing its domestic GHG emissions. The strategy consists in three steps:

- Monitoring, reporting and verification of CO$_2$ emissions from large ships using EU ports
- Greenhouse gas reduction targets for the maritime transport sector
- Further measures including market-based measures in the medium to long term

From 2018, the MRV companies (ships over 5000 gross tonnes loading/unloading cargo/passengers at EU maritime ports) are to monitor and report their related CO$_2$ emissions, submit to an accredited MRV shipping verifier a monitoring plan and submit the verified emissions through THETIS MRV (a dedicated European Union Information system currently under development by the European Maritime Safety Agency).

GULF OF FINLAND’S STRAIT

43 Reducing emissions from the shipping sector, European Commission https://ec.europa.eu/clima/policies/transport/shipping_en
At the strait level, the application of the national objectives (disaggregated by sector) results in a reduction of the emissions by 19% by 2030, compared to 2016. The following table presents the main hypothesis made to estimate the decarbonization path of the Gulf of Finland’s Strait.

Table 20 - Hypothesis for the estimation of the decarbonization path of the Gulf of Finland’s Strait

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary)</th>
<th>Source of hypothesis</th>
<th>% of reduction</th>
<th>Emissions 2016 (tCO₂e)</th>
<th>Emissions 2030 (tCO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>European Commission’s target on CO₂ emissions from maritime transport</td>
<td>-40% between 2005 and 2050 (corresponding to -12.3% between 2016 and 2030)</td>
<td>102 027</td>
<td>89 478</td>
</tr>
<tr>
<td>Maritime transport</td>
<td>European Commission’s target on CO₂ emissions from maritime transport</td>
<td>-40% between 2005 and 2050 (corresponding to -12.3% between 2016 and 2030)</td>
<td>3 413 207</td>
<td>2 993 383</td>
</tr>
<tr>
<td>In-land traffic</td>
<td>Transport target in Finnish National Energy and Climate Strategy for 2030 and Estonia’s Second Biennal Report under the UNFCCC</td>
<td></td>
<td>285 083</td>
<td>205 271</td>
</tr>
<tr>
<td>Industries</td>
<td>Industry target in EU Emission Trading Sector for Finland and Estonia’s Second Biennal Report under the UNFCCC</td>
<td>Fi: -50% between 2005 and 2030 (corresponding to -27.5% between 2016 and 2030) EE: -36% between 2013 and 2030 (corresponding to -29.0% between 2016 and 2030)</td>
<td>4 849 287</td>
<td>3 696 959</td>
</tr>
<tr>
<td>Buildings</td>
<td>Finnish global reduction in the non-ETS sector and Estonia’s Second Biennal Report under the UNFCCC</td>
<td>Fi: -39% between 2005 and 2030 (corresponding to -21.5% between 2016 and 2030) EE: -10% between 2013 and 2030 (corresponding to -8.2% between 2016 and 2030)</td>
<td>1 028 048</td>
<td>839 194</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>9 677 653</td>
<td>7 824 284</td>
</tr>
</tbody>
</table>

This reduction is due to the actions implemented at all the levels (national, regional, local) and corresponds to the path that is being taken with the actual strategies. The emissions can also be reduced by implementing new actions specifically on the strait’s boundary.
4. Towards the implementation of action plans

The Gulf of Finland’s Strait developed an action plan contributing to the reduction of the strait’s emissions. The action plan has 4 main actions. These actions are mainly cross-border actions to strengthen the cooperation between the two regions:

- “Policy change and impact: towards fewer carbon emissions”: this action aims to influence the programme Interreg Central Baltic to include low-carbon objectives.
- “Ensuring low-carbon transport”: this action aims to implement the E-ticketing project to develop a common ticketing system and e-ticketing in Helsinki and Tallinn. This should result in a reduction of the in-land traffic emissions with a stronger use of the public transport.
- “Deepening of the cooperation”: this action aims to enforce the cooperation within the strait, with the signature of a new Memorandum of Understanding between Finland and Estonia.
- “Communication: broadening the awareness of a low carbon Gulf of Finland”: this action aims to communicate about the project, presenting the results, to sensitize the managing authorities and the public.

The following table presents the actions reducing emissions from each source.
Table 21 - Impact of the actions of the Gulf of Finland’s Strait on each source of emissions

<table>
<thead>
<tr>
<th>Thematic axes</th>
<th>Cross-border</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maritime traffic</td>
<td>• Ensuring low-carbon transport</td>
</tr>
<tr>
<td>In-land traffic</td>
<td>• Ensuring low-carbon transport</td>
</tr>
<tr>
<td>Induced economical activities</td>
<td>• Policy change and impact towards fewer carbon emissions</td>
</tr>
</tbody>
</table>
Overview of the baseline study at strait level: Fehmarn Belt

This chapter presents the main conclusions of the analysis carried out for Fehmarn Belt.

IDENTITY OF THE STRAIT

The strait in a nutshell
The Strait of Fehmarn Belt is an 18 km width passage area where the Bay of Kiel and the Bay of Mecklenburg meet the German island of Fehmarn and the Danish island of Lolland.

The strait specificities
- Most of the maritime traffic is transit shipping, without any stop on the two shores of the strait.
- Both Puttgarden (DE) and Rodby (DK) ferry harbours are small town/villages.
- A binational institution The Fehmarnbelt Committee
- A tunnel project across the strait of Fehmarn Belt: “The Fehmarn Belt Fixed Link”

Main findings
- 1.5 MtCO₂e were emitted within Fehmarnbelt’s boundary in 2016, equivalent to the average emissions of about 217 000 inhabitants in Europe⁴⁴, which is 0.2% of German emissions and 3.0% of Danish emissions in 2014⁴⁵.
- The local maritime cruise (Scandlines) represents an important part of the emissions, with 17% of the emissions.
- The residential and commercial activities of the regions are the main emitters of the strait.
- The road transport linked to the goods and passengers passing by the strait’s ports (Puttgarden and Rodby) is also an important emitter of the strait.

Decarbonization paths
- Denmark and Germany have ambitious targets of reduction of GHG emissions implemented in national strategies:
 - Reduction of emissions by 55% by 2030 compared to 1990 and greenhouse gas-neutral by 2050 in Germany
 - Reduction of emissions by 40% by 2020 and 80-95% by 2050 compared to 1990 in Denmark
- The decarbonization path, based on the national targets applied to the strait’s emissions, results in a reduction of the GHG emissions by 17% by 2030 compared to 2016.

⁴⁴ Considering 6.8 tCO₂e/capita. Source: Service of Observation and Statistics in France, based on data by EDGAR, World Bank, 2015
⁴⁵ Considering emissions of 854 MtCO₂e in Germany and 49 MtCO₂e in Denmark in 2014. Source: CAIT Climate Data Explorer, World Resources Institute
1. Analysis of the situation at the strait level

Organizational perimeter

The Region Zealand and the County of Ostholstein are the PASSAGE administrative authorities. The table below presents their main respective features.

<table>
<thead>
<tr>
<th>The Fehmarnbelt</th>
<th>DENMARK</th>
<th>GERMANY</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PASSAGE administrative authorities</td>
<td>Region Zealand</td>
<td>County of Ostholstein</td>
</tr>
<tr>
<td>Inhabitants (million)</td>
<td>0.83</td>
<td>0.20</td>
</tr>
<tr>
<td>Area (km²)</td>
<td>7 273</td>
<td>1 392</td>
</tr>
<tr>
<td>Density (inhab./km²)</td>
<td>110</td>
<td>140</td>
</tr>
<tr>
<td>Number of district authorities</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Coastline (km)</td>
<td>208</td>
<td>185</td>
</tr>
</tbody>
</table>

Coastline:
- The maritime boundary is set according to the boundaries of the NUTS 3 region (Zealand and Ostholstein);
- The Danish border boundary is the Zealand region (NUTS 3);
- The German border boundary is the Ostholstein region (NUTS 3).

The following map shows the boundaries of the strait considered here:

![Geographical boundary of the strait of Fehmarnbelt](image)

Figure 63 - Geographical boundary of the strait of Fehmarnbelt (Source: I Care & Consult)

Nomencslature of territorial units for statistics (hierarchical system for dividing up the economic territory of the EU).
Functional & operational perimeter

Within the strait area, the main activity with possible significant GHG emissions is the sea-based traffic, and more precisely the transit shipping traffic. In comparison, as there are no major local economic activities (urban areas, industries), and even if there is a ferry route carrying passengers, the local traffic between the two shores of the strait is of much less magnitude. The two major large cities on each side of the strait are quite far, respectively 160 km and 150 km for Copenhagen (DK) and Hamburg (DE).

PORTS

Both Puttgarden (DE) and Rodby (DK) ferry harbours are dedicated to ferries (see Puttgarden photo opposite). Scandlines is operating the main Rodby port. This private company is currently operating 6 ferries across these two ports. A secondary port (Rodbyhavn Traffic harbour) is partly owned by the Rødbyhavn Lolland Municipality and has a small traffic of about 100 ships a year. They mainly carry fertilizer and grain for agriculture.

MARITIME TRAFFIC

As suggested by the literature review, the sea-based activity must be the main GHG source of emissions within a strait. The key figures of the main maritime traffic occurring in the Fehmarn Belt Strait are reported below:

- **The local maritime traffic** concerns the trips, by ferries, between Rodby and Puttgarden. This traffic represents around 35 500 trips in 2016, according to Scandlines, the main ferry operator. About 6 million passengers were transported across the strait, as well as more than 1.5 million cars, 472 700 lorries, 31 100 busses and 13 400 passenger trains. Scandlines are engaged in reducing their GHG emissions with the implementation of large scale Hybrid technology and fuel efficiency programs. The next aim is to operate “zero emission” ferries by 2020-2025 (operating on electricity from neighbouring windmill farms).
• **The maritime traffic with calls at the strait’s ports** (Rodby and Puttgarden) is almost non-existent.

• **The transit maritime cruise** concerns the vessels passing through the Fehmarnbelt without any calls to the strait’s ports. This represents more than 38 000 ships in 2016, mainly General Dry Cargo ships and Tankers.

![Type of ships passing through Fehmarnbelt](image)

Figure 66 - Type of ships passing through the Fehmarnbelt (Source: I Care & Consult, based on data provided by Femern A/S)

Femern A/S provided AIS data for the ships passing through the Fehmarnbelt. It is required by IMO, Regulation 19 of SOLAS Chapter V, that AIS is fitted aboard all ships of 300 gross tonnage and upwards engaged on international trips, as well as the cargo ships of 500 gross tonnage and upwards not engaged on international trips and all passenger ships irrespective of size.

![Intensity plot of the Fehmarnbelt area based on AIS registrations in 2013 with main navigational routes marked](image)

Figure 67 - Intensity plot of the Fehmarnbelt area based on AIS registrations in 2013 with main navigational routes marked (Source: Femern A/S)

According to the AIS data studied by Femern A/S, the main route through Fehmarnbelt (T route) has approximately 20 200 westbound ship movements and 17 300 eastbound ship movements in 2013.
IN-LAND TRAFFIC

The in-land traffic related to the ferry service activity is dominated by passengers travelling by cars (80%) and trailers (18%). Buses and railway wagons traffics are of much less magnitude, buses concentrating almost the remaining 2% of the overall traffic.47.

In 2016, 6 008 187 passengers crossed the strait with the ferries, including 1 529 649 cars, 31 113 buses (driving an estimated distance of 160 km in Denmark and 400 km in Germany) as well as 13 414 passenger train wagons (travelling an estimated distance of 32 km in Denmark and 34 km in Germany). The ferries also transported 472 725 lorries, which are considered to be driving a distance of 129 km in Denmark and 107 km in Germany.

Figure 68 - Scandlines traffic (Source: Scandlines)

CITIES & TOWNS

The regions Zealand (Denmark) and Ostholstein (Germany) also present emissions due to the energy consumption in the residential and commercial sectors. Those emissions are estimated based on the population of the strait’s main regions and the national GHG inventory.

Population of the strait’s regions

Figure 69 - Population of the main regions of the Fehmarnbelt (Source: I Care & Consult from data by Eurostat – NUTS 3)

47 Ibid. and NOSTRA project figures.
Schematic representation of the strait

Figure 70 - Schematic “choreme” representation of the Fehmarnbelt (Source: I Care & Consult)
Geographic representation of the strait

This map presents the main distances considered within the boundary based on the geographic boundary of the strait, as defined in the methodological note. The NUTS3 regions were considered to delimit the maritime boundary of the strait.

Figure 71 - Representation of the geographical boundary of the Fehmarnbelt (Source: I Care & Consult)
2. GHG emissions and key priorities for future actions

This section aims to gather the main GHG emissions sources within the strait perimeter.

The latter are calculated thanks to the data collected from existing studies carried out by the PASSAGE administrative authorities, the local stakeholders, the literature reviews, and processed by I Care & Consult.

The Fehmarnbelt emitted 1.5 MtCO\textsubscript{2}e in 2016. The main source of emission is the induced economical activities with 48\% of the total emissions, followed by the maritime transport representing 32\% of the total emissions and the in-land traffic with 20\% of the emissions. The emissions are mainly impacted by the emissions from the residential and economical activities in the regions. It is important to note that some emission sources were not estimated based on a lack of data (such as the emissions from the energy consumption in ports and the ships in port areas).

Figure 72 - Repartition of emissions from the Fehmarnbelt (Source: I Care & Consult)

Table 22 - Repartition of emissions from the Fehmarnbelt, per source

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary)</th>
<th>Denmark</th>
<th>Cross-border</th>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>Energy consumption</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Maritime transport</td>
<td>Ships in port areas</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Local maritime cruise</td>
<td>248 571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maritime cruise with calls to the strait’s ports</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit maritime cruise</td>
<td>231 081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-land traffic</td>
<td>Road transport</td>
<td>182 340</td>
<td>106 849</td>
</tr>
<tr>
<td>Railway transport</td>
<td>1 997</td>
<td>1 088</td>
<td></td>
</tr>
<tr>
<td>Induced economical activities</td>
<td>Industries</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cities</td>
<td>412 319</td>
<td>298 545</td>
</tr>
<tr>
<td>TOTAL</td>
<td>596 657</td>
<td>479 652</td>
<td>406 483</td>
</tr>
</tbody>
</table>
The emissions due to the strait’s activity but emitted outside of the boundary (due to in-land and maritime transport outside of the boundary) were also estimated. Considering these indirect emissions, the strait is responsible for the emissions of 1.7 MtCO$_2$e, from which 86% are emitted within the boundary. It is important to note that some of the indirect emission sources could not be estimated due to lack of information (such as the out-boundary maritime transport from the transit maritime cruise).

PORTS

These emissions concern the emissions from the energy consumption of the ports and from the ships in port areas (manoeuvring and at berth, consuming energy for the main and auxiliary engines). Due to the lack of information on the ports, the emissions were not estimated.

MARITIME TRAFFIC

These emissions concern the emissions from the maritime transport within the strait’s boundary. They represent 33% of the total emissions.

- **Local maritime cruise**

 This source of emissions concerns the ferries navigating between Rodby and Puttgarden (with the company Scandlines) and occurs only within the strait’s boundary. It represents 249 ktCO$_2$e, 17% of the total emissions and more than 50% of the emissions from maritime transport.

 In 2016, more than 6 million passengers travelled between the ports of Rodby and Puttgarden, as well as more than 470 000 lorries.

- **Maritime cruise with ships calling at the strait’s ports**

 This source of emissions concerns all the ships calling at each of the strait’s ports (Rodby and Puttgarden) travelling to a port outside of the strait. Due to a lack of information, this emission source was not estimated in this study. However, due to the relatively small size of the ports, it is likely that these emissions would be negligible.

- **Transit maritime cruise**

 The transit maritime cruise represents the vessels passing through the Fehmarnbelt without any call to the strait’s ports (Rodby and Puttgarden). It represents 231 ktCO$_2$e in 2016, which is 48% of the total maritime emissions and 16% of the total emissions. It is important to note that, due to lack of information, the out-boundary emissions from transit maritime cruise could not be estimated.

 Most of the emissions come from the general cargo ships, the tankers and the passenger ships representing more than 80% of the transit maritime cruise.
The main ports of destination for westbound traffic on the route are Rotterdam (Netherlands), Hamburg and Kiel (Germany), while the main ports of destination for eastbound traffic are St Petersburg (Russia) and Klaipeda (Lithuania).

IN-LAND TRAFFIC

These emissions concern the in-land transport (road and railway transport) within the strait’s boundary. They represent 32% of the total emissions.

Road transport is the most important source of in-land traffic emissions and represents about 289 ktCO₂e. Road transport represents more than 99% of the emissions from in-land traffic.

Railway transport is the second source of in-land traffic emissions and represents 3 ktCO₂e. Railway transport represents less than 1% of the emissions from in-land traffic.

Concerning freight traffic, even though both ports handled the same amount of goods, the emissions are higher in Denmark, because of the longer distance travelled. Road transport is the most important source of emissions and most of the emissions occur within the strait’s boundary. There are no freight trains transported by ferry. The freight trains take a 160km detour across the Great Belt Bridge.
Concerning the passenger traffic, even though both ports welcomed the same number of passengers, the emissions of the port of Puttgarden are higher due to a longer distance travelled. The road transport is still the most important source of emissions.

![Emissions from in-land traffic of passengers in the Fehmarnbelt](image)

INDUCED ECONOMICAL ACTIVITIES

This source concerns the emissions from the industries and from the cities (residential and commercial emissions from energy consumption) which occur only within the strait’s boundary. It represents 711 ktCO$_2$e, which represents 48% of the total emissions.

- **Industries**

 No industries were identified near Rodby and Puttgarden.

- **Cities**

 The emissions from the cities were estimated based on the number of inhabitants in the NUTS 3 region which shore correspond to the strait (Region Zealand and Ostholstein). They emitted about 711 ktCO$_2$e in 2016.
Emissions from the induced economical activity (residential and commercial) in the strait’s regions

- DK (Zealand): 58%
- DE (Ostholstein): 42%

Figure 76 - Emissions from the Fehmarnbelt’s regions (Source: I Care & Consult)
3. Decarbonization paths

In the last years, the threat of climate change is being addressed globally by the United Nations Framework Convention on Climate Change (UNFCCC). The EU emissions represent about 10% of total global emissions and its Member States have ratified the UNFCCC’s Kyoto Protocol in 1997 and the Paris Agreement in 2015, setting emission targets to limit the global emissions and keep global warming below 2°C. The EU aims to decarbonize its energy system and cut its greenhouse gas emissions by 80% to 95% by 2050. To achieve this goal, it has set a binding target of reducing emissions by at least 40% compared to 1990 levels by 2030. Many European countries have adopted national programs aimed at reducing emissions.

DENMARK

The Danish government set ambitious targets through its Climate Policy Plan, published in 2013. The aim is to reduce greenhouse gas emissions by 40% by 2020 compared with the 1990 levels, and by 80-95% by 2050, in compliance with the EU target and the recommendations from climate scientists. The Danish government wants all sectors, including non-ETS sectors, to contribute with concrete and documented reductions up to 2020 and beyond. Within the EU, Denmark has an obligation to reduce non-ETS emissions in the period 2013-2020, increasing to a total reduction of 20% in 2020 compared with 2005. All of Denmark’s energy supply, including transport energy consumption, shall be based on renewable energy by 2050. As part of this, oil for heating purposes and coal are to be phased out by 2030 and electricity and heating supply is to be 100% covered by renewable energy by 2035.

![Figure 77 - Historical and projected Danish greenhouse gas emissions without policy changes up to 2020 (Source: Danish Climate Policy Plan, 2013)](image-url)
In 2014, the parliament passed the Danish climate law. The law is supposed to ensure a stable direction and framework around the Danish climate policies. The goal is to transform the Danish economy into a low-emission society by 2050, resulting in a resource efficient society where energy supply is based on renewable energy resources and where the greenhouse gas emissions from other sectors is significantly lower, while at the same time leaving room for economic growth and development.

In compliance with the EU policy Denmark must reduce its non-ETS emissions by 39% by 2030 relative to 2005.

In 2015, total Danish greenhouse gas emissions had fallen by about 27% compared with 1990. Basic scenario projections, according to the Danish Energy and Climate Outlook 2017, show a fall in total emissions up to 2020, mainly due to the deployment of and conversion to renewables as well as decreased energy consumption as a consequence of energy efficiency improvements. After 2020, and with the assumption of no new policy, the schemes for renewable energy capacity installation and energy saving efforts will not be replaced by new ones, which will lead to an increase in emissions. Considering the realization of the announced phase-out of coal by 2023, emissions are expected to drop in a period up to 2025, and after which they will slowly begin to rise again. A reduction of emissions by 39% by 2030 compared to 1990 is then projected.

- Energy: reduction by 15% by 2030 compared to 2015 (considering the alternative scenario)
- Transport: stabilization of the emissions by 2030 compared to 2015
- Agriculture: stabilization of the emissions by 2030 compared to 2015
- Other: reduction by 15% by 2030 compared to 2015

![Figure 78 - Development in emissions and share of total emissions by sector (Source: Denmark’s Energy and Climate Outlook, 2017)](image)

It should be noted that the Danish Energy and Climate Outlook is published each year and take into account only the policies now implemented. After 2020, a new Energy Policy will be elaborated and according to the Danish Climate Law, new national climate targets are to be proposed every fifth year by the minister for energy, utilities and climate.
In November 2016, the German government adopted the Climate Action Plan 2050. The long-term goal is to become extensively greenhouse gas-neutral by 2050 and the medium-term target is to cut greenhouse gas emissions in Germany by at least 55% by 2030 compared to 1990 levels. A broad dialogue process was implemented to elaborate the action plan, with suggestions for strategic climate measures up to 2030. In its Climate Action Plan 2050, the German government also lays down 2030 targets for individual sectors:

- Energy sector: reduction by 49% by 2030 compared to 2014
- Industry: reduction by 21% by 2030 compared to 2014
- Buildings: reduction by 39% by 2030 compared to 2014
- Transport: reduction by 39% by 2030 compared to 2014
- Agriculture: reduction by 15% by 2030 compared to 2014

Figure 79 - Sectoral historical and target emissions (Source: Federal Ministry for the Environment, Nature Conservation, Construction and Reactor Safety, 2017)

To ensure the 2030 targets are achieved, in 2018 the Climate Action Plan 2050 will be underpinned with a programme of measures with quantifiable effects on reductions. An evaluation will be carried out for each programme of measures prior to its implementation to assess its possible ecological, social and economic impacts.

Furthermore, the regions, districts and cities also implement climate action plan on their territory. The district of Ostholstein has fixed climate protection goals in 2016 in its “Integriertes Klimaschutkonzept” to reduce the CO₂ emissions by 30% by 2030 compared to 2013 and by 85% by 2050 compared to 2013.
Maritime transport emits around 1,000 MtCO$_2$e annually and is responsible for about 2.5% of global greenhouse gas emissions (3rd IMO GHG Study). Shipping emissions are predicted to increase between 50% and 250% by 2050, depending on future economic and energy developments. According to the 2nd IMO GHG Study, ship’s energy consumption and CO$_2$ emissions could be reduced by up to 75% by applying operational measures and implementing existing technologies. The EU and its Member States have a strong preference for a global approach led by the International Maritime Organization (IMO) to reduce the energy consumption and GHG emissions of the shipping sector. The European Commission’s 2011 White Paper on transport suggests that the EU’s CO$_2$ emissions from maritime transport should be cut by at least 40% from 2005 levels by 2050, and if feasible by 50%. However, international shipping is not covered by the EU’s current emissions reduction targets.

In 2013, a strategy was set out by the Commission to include maritime emissions into the EU’s policy for reducing its domestic GHG emissions. The strategy consists in three steps:

- Monitoring, reporting and verification of CO$_2$ emissions from large ships using EU ports
- Greenhouse gas reduction targets for the maritime transport sector
- Further measures including market-based measures in the medium to long term

From 2018, the MRV companies (ships over 5000 gross tonnes loading/unloading cargo/passengers at EU maritime ports) are to monitor and report their related CO$_2$ emissions, submit to an accredited MRV shipping verifier a monitoring plan and submit the verified emissions through THETIS MRV (a dedicated European Union Information system currently under development by the European Maritime Safety Agency).

At the strait level, the application of the national objectives (disaggregated by sector) results in a reduction of the emissions by **17% by 2030**, compared to 2016. The following table presents the main hypothesis made to estimate the decarbonization path of the Fehmarnbelt.

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary)</th>
<th>Source of hypothesis</th>
<th>% of reduction</th>
<th>Emissions 2016 (tCO₂e)</th>
<th>Emissions 2030 (tCO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>European Commission’s target on CO₂ emissions from maritime transport</td>
<td>-40% between 2005 and 2050 (corresponding to -12.3% between 2016 and 2030)</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Maritime transport</td>
<td>European Commission’s target on CO₂ emissions from maritime transport</td>
<td>-40% between 2005 and 2050 (corresponding to -12.3% between 2016 and 2030)</td>
<td>479 652</td>
<td>420 655</td>
</tr>
<tr>
<td>In-land traffic</td>
<td>Transport target in Danish Energy and Climate Outlook 2017 and German Climate Action Plan 2050</td>
<td>DK: stabilization between 2015 and 2030 (corresponding to -0% between 2016 and 2030) DE: -39% between 2014 and 2030 (corresponding to -33.3% between 2016 and 2030)</td>
<td>292 275</td>
<td>256 332</td>
</tr>
<tr>
<td>Industries</td>
<td>Energy target in Danish Energy and Climate Outlook 2017 and Industry target in German Climate Action Plan 2050</td>
<td>DK: -15% between 2015 and 2030 (corresponding to -13.9% between 2016 and 2030) DE: -21% between 2014 and 2030 (corresponding to -18.1% between 2016 and 2030)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Buildings</td>
<td>Energy target in Danish Energy and Climate Outlook 2017 and Building target in German Climate Action Plan 2050</td>
<td>DK: -15% between 2015 and 2030 (corresponding to -13.9% between 2016 and 2030) DE: -39% between 2014 and 2030 (corresponding to -33.3% between 2016 and 2030)</td>
<td>710 864</td>
<td>554 136</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>1 482 791</td>
<td>1 231 123</td>
</tr>
</tbody>
</table>

This reduction is due to the actions implemented at all the levels (national, regional, local) and corresponds to the path that is being taken with the actual strategies. The emissions can also be reduced by implementing new actions specifically on the strait’s boundary.
Furthermore, it is important to note that the new Fehmarnbelt tunnel will also help to reduce the emissions of the traffic between the two countries. The Fehmarnbelt link is part of the European TEN-T network whose objective is to enhance the efficiency of the infrastructure to have less environmental impact. Therefore, one of the objective is to transfer more freight from the roads to the railway, to reduce energy consumption and to ease congestion on local roads and in cities. With the fixed link, the rail freight journey will be shortened by 160 km between Scandinavia and Europe.

Indeed, even though the construction of the fixed link will be a source of greenhouse gas emissions (about 2 000 ktCO₂e) and the operation will also emit greenhouse gases (about 5.9 ktCO₂e), according to the Greenhouse Gas Emission Inventory of the Fehmarnbelt Fixed Link, published in 2013, there will still be reduction in the emissions due to the traffic. Once built, the Fehmarnbelt project will result in a reduction of 43 to 198 ktCO₂e per year, depending on the traffic scenario (all the traffic goes through the tunnel and the ferries stop operating or half the passenger cars continue to take the ferries), compared to a “zero-alternative” (without fixed link).

Scandlines aims to implement zero-emission ferries around 2020 between Rodby and Puttgarden, operating on electricity from neighboring windmill farms. This will impact the estimation of emissions reduced by the operation of the fixed link, however, according to the report on amended emissions published in 2015, a significant reduction of emissions will still be achieved. Furthermore, considering a more global scale, the implementation of the fixed link will not only allow a reduction of the emissions linked to the road transport in the strait, but will also impact emissions from transport in the two countries. A reduction of the flights between Hamburg and Copenhagen is expected, as happened with the construction of a railway between Hamburg and Berlin, due to the presence of a fast train between those two cities.
4. Towards the implementation of action plans

Fehmarnbelt developed an action plan contributing to the reduction of the strait’s emissions. The action plan has 5 main actions about “People meet across the Fehmarnbelt and generate less CO₂”. These actions are mainly cross-border actions to strengthen the cooperation between the two regions:

- “New stations”: this action consists of ensuring that the new stations are equipped to service the costumers expected to use the trains.
- “Types of traffic and the new stations on the upgraded railway”: this action consists of ensuring that a number of trains stop at the stations in the Fehmarnbelt Region to improve the accessibility to the region.
- “Connection between new station and town”: this action consists of establishing public transport between the towns and the new stations.
- “Get more people to use the train, new mobility in the Fehmarnbelt Region”: this action consists in encouraging the transport by train instead of cars in the region.
- “Reintroduction of the Fehmarnbelt Ticket”: this action consists of promoting the use of public transports by proposing an affordable ticket to use on both sides of the strait.

All these actions should mainly impact on the in-land traffic emissions by promoting the use of public transport and electric vehicles.

Table 24 - Impact of the actions of Fehmarnbelt on each source of emissions

<table>
<thead>
<tr>
<th>Thematic axes</th>
<th>Cross-border</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-land traffic</td>
<td>• New stations</td>
</tr>
<tr>
<td></td>
<td>• Types of traffic and the new stations on the upgraded railway</td>
</tr>
<tr>
<td></td>
<td>• Connection between new station and town</td>
</tr>
<tr>
<td></td>
<td>• Get more people to use the train, new mobility in the Fehmarnbelt Region</td>
</tr>
<tr>
<td></td>
<td>• Reintroduction of the Fehmarnbelt Ticket</td>
</tr>
</tbody>
</table>
Overview of the baseline study at strait level: Corsica Channel

This chapter presents the main conclusions of the analysis carried out for Corsica Channel.

IDENTITY OF THE STRAIT

The strait in a nutshell
The Corsica Channel is the 80 km width strait between the north-eastern French Corsica Island area and the Italian Province of Livorno sea coast.

The strait specificities
• The maritime traffic consists in a mix of industrial and freight on one hand, and passengers on the other hand, notably induced by a significant touristic activity.
• A significant activity within the strait occurs during the high summer season.

Main findings
• 5.2 MtCO$_2$e were emitted within Corsica Channel’s boundary in 2016, equivalent to the average emissions of about 0.8 million inhabitants in Europe49, which is 1.3% of French emissions and 1.3% of Italian emissions in 201450.
• The industries in Livorno and Piombino represent the main emitter of the strait, with 69% of the emissions.
• The maritime transport represents also a large part of the emissions.
• The road transport linked to the goods and passengers passing by the strait’s ports (Bastia, Livorno and Piombino) is also an important emitter of the strait.

Decarbonization paths
• France and Italy have ambitious targets of reduction of GHG emissions implemented in national strategies:
 o Reduction of emissions by 40% by 2030 and 75% by 2050 compared to 1990 in France
 o Reduction of emissions by 39% by 2030 and 63% by 2050 compared to 1990 in Italy
• The decarbonization path, based on the national targets applied to the strait’s emissions, results in a reduction of the GHG emissions by 33% by 2030 compared to 2016.

49 Considering 6.8 tCO$_2$e/capita. Source: Service of Observation and Statistics in France, based on data by EDGAR, World Bank, 2015
50 Considering emissions of 413 MtCO$_2$e in France and 403 MtCO$_2$e in Italy in 2014. Source: CAIT Climate Data Explorer, World Resources Institute
1. Analysis of the situation at the strait level

Organizational perimeter

The Chamber of Commerce and Industry of Bastia Haute Corse and the Chamber of Commerce of Maremma and Tirreno are the PASSAGE administrative authorities. The table below presents the main respective features of their respective regions.

<table>
<thead>
<tr>
<th>The Corsica Channel</th>
<th>FRANCE</th>
<th>ITALY</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PASSAGE administrative authorities</td>
<td>Chamber of Commerce and Industry of Bastia Haute Corse (Haute Corse County Council)</td>
<td>Chamber of Commerce of Maremma and Tirreno (Provinces of Livorno and Grosseto)</td>
</tr>
<tr>
<td>Inhabitants (million)</td>
<td>0,17</td>
<td>0,56</td>
</tr>
<tr>
<td>Area (km²)</td>
<td>4 666</td>
<td>5 716,83</td>
</tr>
<tr>
<td>Density (inhab./km²)</td>
<td>37</td>
<td>98</td>
</tr>
<tr>
<td>Number of cantons/municipalities</td>
<td>15 (cantons)</td>
<td>48 (municipalities)</td>
</tr>
<tr>
<td>Coastline (km)</td>
<td>-</td>
<td>585</td>
</tr>
<tr>
<td>Main city</td>
<td>Bastia</td>
<td>Livorno</td>
</tr>
</tbody>
</table>

The boundaries of the strait were determined as following:
- The maritime boundary is set according to the IMO Separation Traffic Scheme boundary;
- The French border boundary is the Haute Corse region (NUTS 3);
- The Italian border boundary is the Livorno region (NUTS 3).

The following map shows the boundaries of the strait considered here:

![Figure 81 - Geographical boundary of the strait of Corsica Channel (Source: I Care & Consult)](image)

Nomenclature of territorial units for statistics (hierarchical system for dividing up the economic territory of the EU).

Carbon emissions study in the European Straits of the PASSAGE project Final Report
Functional & operational perimeter

Within the strait area, different activities take place and might generate significant GHG emissions, that are not necessarily under the control of the PASSAGE authorities. The main economic activities are industry (Livorno port area) and tourism in both shore of the strait. They induced sea-based emissions, related to four ports: Livorno, Piombino, Portoferroia in Italy, and Bastia in France. Furthermore, the province of Livorno is the most important CO₂ emitter in Tuscany region. The section below aims to list the main features of these activities.

As illustrated by the maritime traffic, both Bastia and Livorno ports are of the utmost importance in their respective countries.

For example, the port of Bastia is the first place of commercial exchanges in Corsica, but also the 2nd passengers port in France. About half of the activity is concentrated during the summer season. There were 4 775 movements (ships arriving and ships departing) in the Port of Bastia in 2016 and the port handled almost 2.1 million tons of goods and more than 2.1 million passengers. It is worth noting that a project for a new low environmental impact port has been in study for 10 years in Bastia.

In Italy, the port of Livorno is a major route for both sea-based and in-land international commerce. Thus, it is a commercial multi-purpose port terminal with motorways and rail ends (see photo opposite), and it also gathers industrial activities. The Port of Livorno handled 32.8 million tons of goods in 2016 and 2.4 million passengers, with 7 405 calls. It is worth noting that the port of Livorno is engaged in an Extended Green Port strategy which aims to mobilize the hinterland, logistics system and surrounding territories for the improvement of environmental sustainability.

One of the emission source from the ports itself is the energy consumption, such as electricity, natural gas, gas oil and diesel. The port of Livorno provided information about is energy consumption (electricity, petrol, diesel, gas for vehicle and natural gas).

The ships, while in port areas (manoeuvring or at berth) are also emitting greenhouse gases through the consumption of fuel in the main and auxiliary engines. The Port of Bastia provided the average time spent in the cone of entry, in the basin, manoeuvring and at berth for each company and type of boat.
As suggested by the literature review, the sea-based activity must be the main GHG source of emissions within a strait. The key figures of the main maritime traffic occurring in the Corsica Channel are reported below:

- **The local maritime traffic** concerns the trips, by ferries, mainly between Bastia and Livorno, but also between Bastia and Piombino and Bastia and Portoferraio. This traffic represents around 1 500 trips in 2016, according to the Port of Bastia, of which about 1 400 are trips on the Bastia-Livorno line. More than 574 000 passengers were transported across the strait, as well as 265 000 tonnes of goods transported between Bastia and Livorno. The main ferry companies are Corsica Ferries and Moby Lines.

- **The maritime traffic with calls at the strait’s ports** (Bastia, Livorno and Piombino) concerns all the ships arriving at and leaving from the strait’s ports, except for the ferries that are included in the local maritime transport. The Port Call Statistics of each port contains information about the type of vessel calling to the port, as well as the ports of origin and destination and other information about the size of the ship. The port of Bastia handled 2 435 calls in 2016 (including the local ferries), mainly Roro cargoes from Marseille, Toulon and Nice (France) and Savona, Genova and Livorno (Italy), as well as some oil tankers (more than 262 000 tonnes from Marseille mainly).
The Port of Piombino handled more than 4.3 million tonnes of freight in 2016, carried mainly by roro cargoes (2.6 million tonnes of freight).

The Province of Livorno imports are significant (4.4 billion euro in 2015) and thus produce significant levels of maritime traffic in terms of freight (crude oil, cars, chemical and base metals' products). A similar, but of less magnitude scheme occurs with exports of manufacturing outputs like chemicals, automotive and metal products, ships, crude-oil refining products, weapons and ammunitions (1.5 billion euro in 2015). In 2016, the Port of Livorno handled more than 7 600 vessels in 2016 (including the local ferries), mainly ferries, roro cargoes, container ships and general cargo ships.

Number of calls per type of vessels in the Port of Livorno (except local maritime cruise)

<table>
<thead>
<tr>
<th>Type of vessel</th>
<th>Total cargo handled in 2016 (in tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tankers</td>
<td>8 362 816</td>
</tr>
<tr>
<td>Bulk carriers</td>
<td>831 615</td>
</tr>
<tr>
<td>Roro cargoes</td>
<td>12 413 062</td>
</tr>
<tr>
<td>Container ships</td>
<td>9 196 116</td>
</tr>
<tr>
<td>Other general cargo ships</td>
<td>2 012 242</td>
</tr>
<tr>
<td>TOTAL</td>
<td>32 815 851</td>
</tr>
</tbody>
</table>

The transit maritime cruise concerns the vessels passing through the Corsica Channel without any calls to the strait’s ports. This represents almost 20,000 ships in 2016, according to the CROSS MED. A new Traffic Separation Scheme was implemented in 2016 in the Corsica Channel.
IN-LAND TRAFFIC

Both freight and passenger traffic result in rail and road transport activities in the hinterlands.

Most of the goods are transported to their next destination by road in Corsica and Italy. The railway network is also an important infrastructure for in-land traffic in both France and Italy. The national share for road and rail transport was used, as well as national statistics on distance based on Eurostat data:

Table 26 - Hypothesis on modal share and distance for in-land traffic based on national statistics

<table>
<thead>
<tr>
<th>Mode</th>
<th>Country</th>
<th>Modal share</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight</td>
<td>Italy</td>
<td>85%</td>
<td>124 km</td>
</tr>
<tr>
<td></td>
<td>France</td>
<td>82%</td>
<td>115 km</td>
</tr>
<tr>
<td>Passengers</td>
<td>Italy</td>
<td>94%</td>
<td>325 km</td>
</tr>
<tr>
<td></td>
<td>France</td>
<td>90%</td>
<td>86 km</td>
</tr>
<tr>
<td>Railways</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight</td>
<td>Italy</td>
<td>15%</td>
<td>225 km</td>
</tr>
<tr>
<td></td>
<td>France</td>
<td>18%</td>
<td>115 km</td>
</tr>
<tr>
<td>Passengers</td>
<td>Italy</td>
<td>6%</td>
<td>60 km</td>
</tr>
<tr>
<td></td>
<td>France</td>
<td>10%</td>
<td>74 km</td>
</tr>
</tbody>
</table>

The following table presents the quantity of goods that were handled in the ports and transported in the hinterland:

Table 27 - Quantity of goods and number of passengers handled in the ports and transported in the hinterland

<table>
<thead>
<tr>
<th>Port</th>
<th>Quantity of goods (tonnes)</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livorno</td>
<td>32 815 851</td>
<td>2 475 906</td>
</tr>
<tr>
<td>Bastia</td>
<td>2 081 485</td>
<td>2 183 243</td>
</tr>
<tr>
<td>Piombino</td>
<td>4 351 003</td>
<td>3 045 983</td>
</tr>
</tbody>
</table>

INDUSTRIES

The industry activities within the Corsica Channel are mainly concentrated in the Livorno port area with:

- The 2nd gas facility in Europe;
- Refineries and oil stock areas;
- Energy power station;
- Chemical and automotive groups.

The gas facility consists in Liquefied Petroleum Gas (LPG) and Liquefied Natural Gas (LNG) activities. The Costiero Gas S.p.A is a company owned by ENI Group and operates LPG facilities like loading points for road-tankers (11) and rail-tankers (3), pipeline for transfer and stock. Costiero Gas represent a crucial facility in Italy as it is the only LPG underground storage and the most important LPG storage in terms of capacity. Furthermore, it provides roughly 25% of the overall Italian LPG needs.
Evolution of the world gas market and the European willingness to diversify and secure gas supplies, are leading to growth in LNG activity. The OLT Offshore LNG Toscana project called “FSRU Toscana”, is a practical example of this. It consists of an offshore regasification Terminal that will convert the Golar Frost LNG carrier (see photo opposite) into a floating unit located 22km off the coast of Livorno.

The regions of Livorno (Italy) and Haute-Corse (France) also produce emissions due to the energy consumption of residential and commercial sectors. Those emissions are estimated based on the population of the strait’s main regions and the national GHG inventory.

![Population of the strait's regions](image)

Figure 87 - Population of the main regions of the Corsica Channel (Source: I Care & Consult from data by Eurostat – NUTS 3)
Schematic representation of the strait

Figure 88 - Schematic “choreme” representation of the Corsica Channel (Source: I Care & Consult)
Geographic representation of the strait

This map presents the main distances considered within the boundary based on the geographic boundary of the strait, as defined in the methodological note. The IMO separation traffic scheme was considered to delimit the maritime boundary of the strait.

Figure 89 - Representation of the geographical boundary of the Corsica Channel (Source: I Care & Consult)
2. GHG emissions and key priorities for future actions

This section aims to gather the main GHG emissions sources within the strait perimeter.

The latter are calculated thanks to the data collected from existing studies carried out by the PASSAGE administrative authorities, the local stakeholders, the literature reviews, and processed by I Care & Consult.

The Corsica Channel emitted 5.2 MtCO$_2$e in 2016. The main source of emission is the induced economical activities with 81% of the total emissions, followed by the maritime transport with 11% of the emissions, the in-land transport representing 8% and the port operations representing less than 1%. The emissions are mainly impacted by the industries in Livorno. It is important to note that some emission sources were not estimated based on a lack of data (such as the emissions from energy consumption in the ports of Bastia and Piombino and the ships in port areas in Livorno and Piombino).

![Figure 90 - Repartition of emissions from the Corsica Channel (Source: I Care & Consult)](image)

Table 28 - Repartition of emissions from the Corsica Channel, per source

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary) in tCO$_2$e</th>
<th>France</th>
<th>Cross-border</th>
<th>Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>Energy consumption</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ships in port areas</td>
<td>23 138</td>
<td></td>
</tr>
<tr>
<td>Maritime transport</td>
<td>Local maritime cruise</td>
<td>73 117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maritime cruise with calls to the strait’s ports</td>
<td>229 978</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transit maritime cruise</td>
<td>289 993</td>
<td></td>
</tr>
<tr>
<td>In-land traffic</td>
<td>Road transport</td>
<td>39 137</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Railway transport</td>
<td>6 186</td>
<td></td>
</tr>
<tr>
<td>Induced economical activities</td>
<td>Industries</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cities</td>
<td>217 055</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>285 516</td>
<td>593 089</td>
<td>4 303 496</td>
</tr>
</tbody>
</table>
The emissions due to the strait’s activity but emitted outside of the boundary (due to in-land and maritime transport outside of the boundary) were also estimated. Considering these indirect emissions, the strait is responsible for the emissions of 5.5 MtCO$_2$e, from which 94% are emitted within the boundary. It is important to note that some of the indirect emission sources could not be estimated due to lack of information (such as the out-boundary emissions from maritime cruise with calls to the Ports of Livorno and Piombino and the out-boundary transit maritime cruise).

PORTS

These emissions concern the emissions from the energy consumption of the ports and from the ships in port areas (manoeuvring and at berth, consuming energy for the main and auxiliary engines). These emissions are occurring within the strait’s boundary. They represent less than 1% of the total emissions within the strait’s boundary.

- **Energy consumption**

 The energy consumption in the Port of Livorno is the source of 694 tCO$_2$e, which represents 3% of the emissions from the port operation. It is important to note that due to lack of information, the emissions from the energy consumption in the Ports of Bastia and Piombino could not be estimated.

 The main source of emission in the Port of Livorno is the electricity consumption representing 90% of the emissions. The other sources of emissions are the consumption of natural gas, and fuels for vehicles (petrol, diesel and gas).

- **Ships in port areas**

 The emissions from ships in port areas represent 23.1 ktCO$_2$e for the Port of Bastia. It is important to note that, as no information was provided on time spent in the port areas by the Ports of Livorno and Piombino, the emissions from the ships in port areas were not estimated.

 The Port of Bastia provided a detailed database with average time spent in the cone of entry, the basin, manoeuvring and at berth for each ship and company calling to the port. For the ferries and ro-ro cargoes, the main difference between ships is the time spent at berth (between one hour to 12 hours), while the time spent in the cone of entry (15 min), in the port basin (10 min) and manoeuvring (10 min) remain the same for each ship. The tankers however spend 20 min in each mode (cone of entry, in the basin and manoeuvring) and 12 hours at berth.
These emissions concern the emissions from the maritime transport within the strait’s boundary. They represent 11% of the total emissions.

- **Local maritime cruise**

This source of emissions concerns the ferries navigating between Bastia and Livorno and Bastia and Piombino and occurs only within the strait’s boundary. The emissions from the ferries travelling between Bastia and Portoferraio were estimated but were not integrated in the final results because of the lack of data from the port of Portoferraio. It represents 73 ktCO\(_2\)e, 12% of the total emissions from maritime transport.

- **Maritime cruise with ships calling at the strait’s ports**

This source of emissions concerns all the ships calling at each of the strait’s ports (Bastia, Piombino and Livorno) travelling to/from a port outside of the strait. It represents 230 ktCO\(_2\)e, almost 40% of the emissions from maritime transport. This only includes the part of the trip that is realized within the strait’s boundary.

Most of the emissions come from the Port of Livorno (more than 13 000 vessels arriving to or departing from the port, excluding the ferries). Most of the emissions from the ships calling at the Port of Livorno are coming from the ferries and the roro cargoes, the cruise ships and the container ships.
The main emissions from the Port of Bastia (more than 3300 vessels, excluding the ferries) come from the roro cargoes.

- **Transit maritime cruise**

The transit maritime cruise is an important source of emissions within the Corsica Channel’s boundary. It represents 290 ktCO$_2$e in 2016, which is almost 50% of the total maritime emissions and 6% of the total emissions within the strait’s boundary. It is important to note that, due to lack of information, the out-boundary emissions from transit maritime cruise could not be estimated.

IN-LAND TRAFFIC

These emissions concern the emissions from in-land transport (road and railway transport) within the strait’s boundary. They represent 8% of the total emissions.

Road transport is the most important source of in-land traffic emissions and represents about 367 ktCO$_2$e. Road transport represents 94% of the emissions from in-land traffic.

Railway transport is the second source of in-land traffic emissions and represents 21.4 ktCO$_2$e.

Concerning freight traffic, the emissions from the goods from/to the Port of Livorno are higher than the ones from/to the Port of Bastia, because of a higher tonnage of goods handled in the port and a higher distance travelled. Road transport is the most important source of emission and most of the emissions occur within the strait’s boundary.
Concerning passenger traffic, even though the Port of Livorno and the Port of Bastia welcomed approximately the same number of passengers, the emissions from Livorno are higher, due to a higher distance travelled. Being an island, the travel distances for Corsica are shorter than in Italy.

Figure 95 - Emissions from in-land traffic of freight in the Corsica Channel (Source: I Care & Consult)

Figure 96 - Emissions from in-land traffic of passengers in the Corsica Channel (Source: I Care & Consult)
INUED ECONOMICAL ACTIVITIES

This source concerns the emissions from industries and cities (residential and commercial emissions from energy consumption) which occur only within the strait’s boundary. It represents 4177 ktCO₂e, which represents 81% of the total emissions.

- **Industries**

 Many industries were identified close to the Ports of Livorno and Piombino. They emitted 3570 ktCO₂e in 2016. The most important emitters of GHG are the ROSEN Rosignano Energia S.p.A site and the E.ON Produzione Centrale Livorno Ferraris S.p.A site. They represent more than 68% of the emissions from industries within the strait’s boundary. The refineries also represent a large part of the GHG emissions within the strait’s boundary.

- **Cities**

 The emissions from the cities were estimated based on the number of inhabitants in the NUTS 3 region which shore correspond to the strait (Livorno and Haute-Corse). They emitted about 606 ktCO₂e in 2016.

![Emissions from the induced economical activity (residential and commercial) in the strait's regions](image)

Figure 97 - Emissions from the Corsica Channel's regions (Source: I Care & Consult)
3. Decarbonization paths

In the last years, the threat of climate change is being addressed globally by the United Nations Framework Convention on Climate Change (UNFCCC). The EU emissions represent about 10% of total global emissions and its Member States have ratified the UNFCCC’s Kyoto Protocol in 1997 and the Paris Agreement in 2015, setting emission targets to limit the global emissions and keep global warming below 2°C. The EU aims to decarbonize its energy system and cut its greenhouse gas emissions by 80% to 95% by 2050. To achieve this goal, it has set a binding target of reducing emissions by at least 40% compared to 1990 levels by 2030. Many European countries have adopted national programmes aimed at reducing emissions.

FRANCE

France has set ambitious targets through its national low-carbon strategy, published in 2015 and that should be revised by the end of 2018, and its Energy Transition Act. A reduction of 40% of the total greenhouse gas emissions is aimed in 2030 compared to 1990 (and a reduction of 75% of its total emissions in 2050 compared to 1990). Greenhouse gas emissions have already decreased by 10.8% between 1990 and 2013, but the rate of reduction must be stepped up in order to achieve the Factor 4 target by 2050. These objectives were disaggregated by sector:

- Transport: reduce the GHG emissions by 29% by 2028 compared to 2013;
- Building sector: reduce the GHG emissions by 54% by 2028 compared to 2013;
- Agriculture and forestry: reduce the GHG emissions by 12% by 2028 compared to 2013;
- Industry: reduce the GHG emissions by 24% by 2028 compared to 2013;
- Energy: stabilize the GHG emissions by 2028 below the 2013 level;
- Waste: reduce the GHG emissions by 33% by 2028 compared to 2013.

![Figure 98 - Evolution of greenhouse gas emissions for France between 1990 and 2013](source)

These objectives are then defined at a more local scale. At the regional level, the Corsican region produced a Climate-Air-Energy Regional Scheme in 2013, aiming to reduce the GHG emissions by 31% by 2020 compared to 2008 and by 89% by 2050 compared to 2008. The transport sector (freight and passengers), as well as the tertiary and residential sectors each contribute to about 30% of the emission reduction by 2020.

The main cities also adopted commitments regarding their GHG emissions, through their Climate Air Energy Territorial Plan (mandatory for every public institution of intercommunal cooperation of more than 20 000 inhabitants).

ITALY

Italy adopted its National Energy Strategy in 2017. The document results from a participative process that involved the Italian Parliament, the Regions and over 250 stakeholders, including associations, companies, public entities, citizens and representatives of academia. The objective of the strategy is to make the national energy system more competitive, more sustainable and more secure. The main targets are to reduce the final energy consumption by a total of 10 Mtoe by 2030, reaching a 28% share of renewables in total energy consumption by 2030 and a 55% share of renewables in electricity consumption by 2030, strengthening supply security, narrowing the energy price gap, furthering sustainable public mobility and eco-friendly fuels and phasing out the use of coal in electricity generation by 2025.

The Italian National Energy Strategy 2017 lays down the actions to be achieved by 2030 in accordance with the long-term scenario drawn up in the EU Energy Roadmap 2050, which provides a reduction of emissions by at least 80% from their 1990 levels.

The target set concerning the greenhouse gas emissions is to reduce them by 39% by 2030 and by 63% by 2050, compared to 1990.

![Settore energetico](image)

Figure 99 - Predicted evolution of greenhouse gas emissions in the energy sector (Source: Italian National Energy Strategy, Ministero dello Sviluppo Economico, 2017)

The National Energy Strategy includes sectoral emissions reduction:
- Industry (including energy industry): reduction of emissions by 38% between 2016 and 2030
- Buildings: reduction of emissions by 24% between 2016 and 2030
- Transport: reduction of emissions by 16% between 2016 and 2030
- Agriculture and other emissions: reduction of emissions by 4% between 2016 and 2030

Moreover, many cities in Italy are signatories of the Covenant of Mayors, such as Livorno. With an adhesion in 2013, Livorno committed to an overall CO₂ emission reduction target of 26% by 2020 compared to 2004 and submitted an action plan, approved in 2014, to achieve this target.

Greenhouse gas emissions

![Image of emission inventory](source)

INTERNATIONAL SHIPPING SECTOR

Maritime transport emits around 1 000 MtCO₂e annually and is responsible for about 2.5% of global greenhouse gas emissions (3rd IMO GHG Study). Shipping emissions are predicted to increase between 50% and 250% by 2050, depending on future economic and energy developments. According to the 2nd IMO GHG Study, ship’s energy consumption and CO₂ emissions could be reduced by up to 75% by applying operational measures and implementing existing technologies. The EU and its Member States have a strong preference for a global approach led by the International Maritime Organization (IMO) to reduce the energy consumption and GHG emissions of the shipping sector. The European Commission’s 2011 White Paper on transport suggests that the EU’s CO₂ emissions from maritime transport should be cut by at least 40% from 2005 levels by 2050, and if feasible by 50%. However international shipping is not covered by the EU’s current emissions reduction targets.

In 2013, a strategy was set out by the Commission to include maritime emissions into the EU’s policy for reducing its domestic GHG emissions. The strategy consists in three steps:

- Monitoring, reporting and verification of CO₂ emissions from large ships using EU ports

- Greenhouse gas reduction targets for the maritime transport sector
- Further measures including market-based measures in the medium to long term

From 2018, the MRV companies (ships over 5000 gross tonnes loading/unloading cargo/passengers at EU maritime ports) are to monitor and report their related CO₂ emissions, submit to an accredited MRV shipping verifier a monitoring plan and submit the verified emissions through THETIS MRV (a dedicated European Union Information system currently under development by the European Maritime Safety Agency).
At the strait level, the application of the national objectives (disaggregated by sector) results in a reduction of the emissions by **33% by 2030**, compared to 2016. The following table presents the main hypothesis made to estimate the decarbonization path of the Corsica Channel.

Table 29 - Hypothesis for the estimation of the decarbonization path of the Corsica Channel

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary)</th>
<th>Source of hypothesis</th>
<th>% of reduction</th>
<th>Emissions 2016 (tCO$_2$e)</th>
<th>Emissions 2030 (tCO$_2$e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>European Commission’s target on CO2 emissions from maritime transport</td>
<td>-40% between 2005 and 2050 (corresponding to -12.3% between 2016 and 2030)</td>
<td>23 832</td>
<td>20 901</td>
</tr>
<tr>
<td>Maritime transport</td>
<td>European Commission’s target on CO2 emissions from maritime transport</td>
<td>-40% between 2005 and 2050 (corresponding to -12.3% between 2016 and 2030)</td>
<td>593 089</td>
<td>520 139</td>
</tr>
<tr>
<td>In-land traffic</td>
<td>Transport target in France’s SNBC53 and Italian National Energy Strategy</td>
<td>FR: -29% between 2013 and 2028 (corresponding to -26.6% between 2016 and 2030) IT: -16% between 2016 and 2030</td>
<td>388 620</td>
<td>321 637</td>
</tr>
<tr>
<td>Industries</td>
<td>Industry target in France’s SNBC and Italian National Energy Strategy</td>
<td>FR: -24% between 2013 and 2028 (corresponding to -22.0% between 2016 and 2030) IT: -38% between 2016 and 2030</td>
<td>3 570 531</td>
<td>2 213 729</td>
</tr>
<tr>
<td>Buildings</td>
<td>Building sector target in France’s SNBC and Italian National Energy Strategy</td>
<td>FR: -54% between 2013 and 2028 (corresponding to -48.7% between 2016 and 2030) IT: -24% between 2016 and 2030</td>
<td>606 029</td>
<td>407 187</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>5 182 101</td>
<td>3 483 592</td>
</tr>
</tbody>
</table>

This reduction is due to the actions implemented at all the levels (national, regional, local) and corresponds to the path that is being taken with the actual strategies. The emissions can also be reduced by implementing new actions specifically on the strait’s boundary.

53 Stratégie Nationale Bas Carbone / Low Carbon National Strategy
4. Towards the implementation of action plans

The Corsica Channel developed an action plan contributing to the reduction of the strait’s emissions. The action plan aims to reduce the emissions in the strait, while developing the circular economy. The action plan has 4 main thematic axes in which high-priority actions will be identified:

- “Action on circular tourism”: this action consists of reducing the emissions from tourism with actions related to waste, recycling policies, energy conservation and use of environmental materials, with the implementation of a strategy such as a Local Plan for Circular Tourism.
- “Action on circular agri-food (agriculture and fishing)”: this action consists of developing a Local Agro-Food Circular Plan to reduce the impacts of agriculture and food on the environment.
- “Action on circular ports (transport and logistics)”: this action consists of exchanging experiences at regional and interregional levels, producing Regional Plans for Circular Port and implementing the plans while creating synergies at cross-border level.
- “Action on communication”: this action consists of spreading the results of the project to the stakeholders, to contribute to low-carbon transition by informing and involving direct and indirect stakeholders.

The following table presents the actions reducing emissions from each source.

Table 30 - Impact of the actions of the Corsica Channel on each source of emissions

<table>
<thead>
<tr>
<th>Thematic axes</th>
<th>Cross-border</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>• Action on circular ports (transport and logistics)</td>
</tr>
<tr>
<td>Induced economical activities</td>
<td>• Action on circular tourism</td>
</tr>
</tbody>
</table>
Overview of the baseline study at strait level: Otranto Strait

This chapter presents the main conclusions of the analysis carried out for Otranto Strait.

IDENTITY OF THE STRAIT

The strait in a nutshell

The Strait of Otranto (Albanian: Kanali i Otrantos; Italian: Canale d’Otranto) connects the Adriatic Sea with the Ionian Sea and separates Italy from Albania. Its width from Kepi i Gjuhes, Karaburun, Albania to Punta Palascia, east of Salento is less than 72 kilometers (45 mi). The strait of Otranto has a very strategic position and for centuries has been a key to control all traffic flow from Mediterranean to Adriatic seas.

The strait specificities

- Major transit area
- The EU has called several places on the Strait of Otranto “sites of Community interest” (SIC), for their environmental importance

Main findings

- 12.7 MtCO$_2$e were emitted within the Strait of Otranto’s boundary in 2016, equivalent to the average emissions of about 1.9 million inhabitants in Europe\(^{54}\), which is 3.2% of Italian emissions and more than the Albanian emissions in 2014\(^{55}\).
- The industries in Brindisi represent the main emitter of the strait, with 88% of the emissions.
- The residential and commercial activities of the strait’s regions represent a large part of the emissions.
- The road transport linked to the goods and passengers passing by the strait’s ports (Brindisi, Durres and Vlora) is also an important emitter of the strait.

Decarbonization paths

- Italy and Albania have ambitious targets of reduction of GHG emissions implemented in national strategies:
 - Reduction of emissions by 39% by 2030 and 63% by 2050 compared to 1990 in Italy
 - Reduction of emissions by 11.5% by 2030 compared to the baseline scenario in Albania
- The decarbonization path, based on the national targets applied to the strait’s emissions, results in a reduction of the GHG emissions by 36% by 2030 compared to 2016.

\(^{54}\) Considering 6.8 tCO$_2$e/capita. Source: Service of Observation and Statistics in France, based on data by EDGAR, World Bank, 2015

\(^{55}\) Considering emissions of 403 MtCO$_2$e in Italy and 9 MtCO$_2$e in Albania in 2014. Source: CAIT Climate Data Explorer, World Resources Institute
1. Analysis of the situation at the strait level

Organizational perimeter

<table>
<thead>
<tr>
<th>The strait of Otranto</th>
<th>ITALY</th>
<th>ALBANIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PASSAGE administrative authorities</td>
<td>Province of Lecce</td>
<td>Regional Council of Vlora</td>
</tr>
<tr>
<td>Inhabitants</td>
<td>815 597</td>
<td>183 105 inhabitants</td>
</tr>
<tr>
<td>Area (km²)</td>
<td>2 759</td>
<td>2 706</td>
</tr>
<tr>
<td>Density (inhab./km²)</td>
<td>296</td>
<td>138</td>
</tr>
<tr>
<td>Number of district authorities</td>
<td>97 comunes (Italian: comuni)</td>
<td>districts of Vlore, Saranda, Delvine. 7 municipalities.</td>
</tr>
<tr>
<td>Coastline (km)</td>
<td>-</td>
<td>244</td>
</tr>
</tbody>
</table>

Main city

<table>
<thead>
<tr>
<th></th>
<th>ITALY</th>
<th>ALBANIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecce</td>
<td>Brindisi</td>
<td>Vlora</td>
</tr>
<tr>
<td>Saranda</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major projects and links with PASSAGE: gas pipeline will cross the Strait of Otranto to bring Azerbaijani gas in Italy, through Greece and Albania, with potential serious repercussions for the environment, tourism and fishing.

The boundaries of the strait were determined as follows:

- The maritime boundary is set according to the boundaries of the NUTS 3⁵⁶ region (Brindisi and Lecce regions in Italy as well as Durres and Vlora in Albania);
- The Italian border boundary is the Brindisi and Lecce regions (NUTS 3);
- The Albanian border boundary is Durres and Vlorë cities.

The following map shows the boundaries of the strait considered here:

Figure 102 - Geographical boundary of the strait of the Strait of Otranto (Source: I Care & Consult)

⁵⁶ Nomenclature of territorial units for statistics (hierarchical system for dividing up the economic territory of the EU).
Functional & operational perimeter

Within the strait area, different activities take place and might generate significant GHG emissions, that are not necessarily under the control of the PASSAGE authorities. The section below aims to list the main activities within the considered perimeter.

PORTS

The major ports of the strait are Brindisi, Durres and Vlorë.

The port of Durres is the most important Albanian port with more than 2.6 million tonnes of freight handled in 2016 and 516 calls to the port. The port of Vlorë handled 54 611 tonnes of freight in 2016 as well as 198 079 passengers and 27 ships calling at the port.

The port of Brindisi is a major port in Italia, with more than 10.1 million tonnes of freight handled in 2016 and almost 5 000 calls to the port.

MARITIME TRAFFIC

As suggested by the literature review, the sea-based activity must be the main GhG source of emissions within a strait. The key figures of the main maritime traffic occurring in the Otranto Strait are reported below:

- **The local maritime traffic** concerns the trips between Vlorë and Otranto. This traffic represents 11 trips in 2016 and 17 330 tonnes of freight (mainly cement and computer parts) according to the Port of Vlora. No information was collected on the ferries between Italy and Albania, even though there seems to be a ferry line between Brindisi and Vlorë indicated in the following map.

![Image of ferry lines from the port of Vlore](https://example.com/ferry_lines.png)

Figure 103 - Ferry lines from the port of Vlore (Source: Ferry Lines, 2014)

- **The maritime traffic with calls at the strait’s ports** (Vlorë, Brindisi and Durres) concerns all the ships arriving at and leaving from the strait’s ports, except for the ferries and ships that are included in the local maritime transport. The Port Call Statistics of each port contains information about the type of vessel calling to the port, as well as the port of origin or destination, the weight carried and other information about the size of the ship. When the Port Call Statistics was not available (as is the case for the Port of Brindisi), the total weight carried per type of ship was considered.
The transit maritime cruise concerns the vessels passing through the Otranto Strait without any calls to the strait’s ports. It mainly concerns ship traffic coming or going to Ancona (4500 ships per year in 2014) or Trieste (3949 ships per year). There is a mandatory reporting system in the Adriatic Sea for all oil tanker ships of 150 gross tonnage and above and for all ships of 300 gross tonnage and above. However, no information could be collected on this traffic.
IN-LAND TRAFFIC

Both freight and passenger traffics result in rail and road transport activities in the hinterlands.

Most of the goods are transported to their next destination by road in Albania and Italy. The national share for road and rail transport was used, as well as national statistics on distance based on Eurostat data. As Albania is not included in the Eurostat database, hypothesis was considered and the distance to the capital Tirana was taken into account:

Table 31 - Hypothesis on the modal share and distance for in-land traffic based on national statistics

<table>
<thead>
<tr>
<th>Mode</th>
<th>Country</th>
<th>Modal share</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight</td>
<td>Italy</td>
<td>85%</td>
<td>135 km</td>
</tr>
<tr>
<td></td>
<td>Albania</td>
<td>100%</td>
<td>150 km from Vlorë</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 km from Durres</td>
</tr>
<tr>
<td>Passengers</td>
<td>Italy</td>
<td>94%</td>
<td>325 km</td>
</tr>
<tr>
<td></td>
<td>Albania</td>
<td>100%</td>
<td>150 km from Vlorë</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 km from Durres</td>
</tr>
<tr>
<td>Railways</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight</td>
<td>Italy</td>
<td>15%</td>
<td>225 km</td>
</tr>
<tr>
<td></td>
<td>Albania</td>
<td>0%</td>
<td>/</td>
</tr>
<tr>
<td>Passengers</td>
<td>Italy</td>
<td>6%</td>
<td>60 km</td>
</tr>
<tr>
<td></td>
<td>Albania</td>
<td>0%</td>
<td>/</td>
</tr>
</tbody>
</table>

The following table presents the quantity of goods that were handled in the ports and transported in the hinterland:

Table 32 - Quantity of goods and number of passenger handled in the ports and transported in the hinterland

<table>
<thead>
<tr>
<th>Port</th>
<th>Quantity of goods (tonnes)</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlorë</td>
<td>54 611</td>
<td>198 079</td>
</tr>
<tr>
<td>Durres</td>
<td>2 693 792</td>
<td>-</td>
</tr>
<tr>
<td>Brindisi</td>
<td>10 080 263</td>
<td>538 639</td>
</tr>
</tbody>
</table>

INDUSTRIES

There are a few industries in the petrochemical part of Brindisi, mainly energy industries such as a thermoelectric power plant (Enel Produzione) and a turbogas power plant (Enipower).

Figure 106 - Enipower power plant in Brindisi (Source: Enipower)
The regions of Lecce and Brindisi (Italy) and Vlorë and Durres (Albania) also produce emissions due to the energy consumption in the residential and commercial sectors. Those emissions are estimated based on the population of the strait’s main regions and the national GHG inventory.

![Population of the strait's regions chart]

Figure 107 - Population of the main regions of the Strait of Otranto (Source: I Care & Consult from data by Eurostat – NUTS 3 and Pop-Stat.Mashke.org)
Schematic representation of the strait

Figure 108 – Schematic “choreme” representation of the Strait of Otranto (Source: I Care & Consult)
Geographic representation of the strait

This map presents the main distances considered within the boundary based on the geographic boundary of the strait, as defined in the methodological note. The NUTS3 regions were considered to delimit the maritime boundary of the strait.

![Image of the geographic representation of the strait](source: I Care & Consult)

Figure 109 - Representation of the geographical boundary of the strait (Source: I Care & Consult)
2. GHG emissions and key priorities for future actions

This section aims to gather the main GHG emissions sources within the strait perimeter.

The latter are calculated thanks to the data collected from existing studies carried out by the PASSAGE administrative authorities, the local stakeholders, the literature reviews, and processed by I Care & Consult.

The Strait of Otranto emitted **12.7 MtCO₂e** in 2016. The main source of emission is the induced economical activities with 99% of the total emissions mainly from the industries in Brindisi, followed by the in-land transportation with 1% and the maritime transport representing less than 1% of the emissions. The emissions are mainly impacted by the industries in Brindisi. It is important to note that some emission sources were not estimated based on a lack of data (such as the emissions from ports operation as well as emissions from the ferries between Brindisi and Vlorë and the emissions from the transit maritime). Therefore, this study is very incomplete, and the emissions are estimated to be a lot higher.

![Emissions within the Strait of Otranto's boundary](image)

Figure 110 - Repartition of emissions from the Strait of Otranto (Source: I Care & Consult)

Table 33 - Repartition of emissions from the Strait of Otranto, per source

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary) in tCO₂e</th>
<th>Italy</th>
<th>Cross-border</th>
<th>Albania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>Energy consumption</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td></td>
<td>Ships in port areas</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Maritime transport</td>
<td>Local maritime cruise</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maritime cruise with calls to the strait’s ports</td>
<td>31 377</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transit maritime cruise</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>In-land traffic</td>
<td>Road transport</td>
<td>51 836</td>
<td>9 630</td>
</tr>
<tr>
<td></td>
<td>Railway transport</td>
<td>2 691</td>
<td>0</td>
</tr>
<tr>
<td>Induced economical activities</td>
<td>Industries</td>
<td>11 163 390</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cities</td>
<td>1 384 799</td>
<td>87 787</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12 602 716</td>
<td>31 432</td>
<td>93 417</td>
</tr>
</tbody>
</table>
The emissions due to the strait’s activity but emitted outside of the boundary (due to in-land and maritime transport outside of the boundary) were also estimated. Considering these indirect emissions, the strait is responsible for the emissions of 12.9 MtCO$_2$e, from which 99% are emitted within the boundary. It is important to note that some of the indirect emission sources could not be estimated due to lack of information (such as the out-boundary maritime transport from ships calling to the Ports of Brindisi and Durres, cruises calling to the Port of Vlorë and the out-boundary transit maritime cruise).

PORTS

These emissions concern the emissions from the energy consumption of the ports and from the ships in port areas (manoeuvring and at berth, consuming energy for the main and auxiliary engines). These emissions are occurring within the strait’s boundary.

As no information was provided by the ports, this emission source could not be estimated.

MARITIME TRAFFIC

These emissions concern the emissions from the maritime transport within the strait’s boundary. They represent less than 1% of the total emissions.

- **Local maritime cruise**
 This source of emissions concerns the ships navigating between Vlorë and Otranto and between Vlorë and Durres. These emissions occur only within the strait’s boundary. It represents 55 tCO$_2$e.

 In 2016, 17 330 tonnes of freight travelled between Vlorë and Otranto, mainly cement as well as computer parts and iron. 5 269 tonnes of freight travelled between Vlorë and Durres, mainly stone tiles.

- **Maritime cruise with ships calling at the strait’s ports**
 This source of emissions concerns all the ships calling at each of the strait’s ports (Vlorë, Durres and Brindisi) travelling to or from a port outside of the strait. It represents 31.4 ktCO$_2$e. This only includes the part of the trip that is realized within the strait’s boundary.

 Most of the emissions come from the Port of Brindisi, which handles more than 10 million tonnes of freight while the port of Durres handles more than 2.6 million tonnes of freight and the port of Vlorë only handles 54 611 tonnes of freight. The ro-ro ships in the Port of Brindisi are the main GHG emitters with 18.5 ktCO$_2$e emitted within the strait’s boundary.
Transit maritime cruise

The transit maritime cruise concerns the ships passing through the Strait of Otranto without calls to the strait’s ports. As no data could be collected on this traffic, the emissions could not be estimated.

As no data could be collected on this traffic, the emissions could not be estimated.

IN-LAND TRAFFIC

These emissions concern the emissions from the in-land transport (road and railway transport) within the strait’s boundary.

Road transport is the most important source of in-land traffic emissions and represents about 61.5 ktCO2e.

Concerning freight traffic, even though the distance travelled was considered lower for Brindisi and Durres than for Vlorë, the emissions are higher due to a higher amount of goods transported. The road transport is the most important source of emission and the amount of emissions is similar within and outside the strait’s boundary.

Emissions from in-land traffic of freight in the Strait of Otranto

![Figure 112 - Emissions from in-land traffic of freight in the Strait of Otranto (Source: I Care & Consult)
Concerning the passenger traffic, only the ports of Vlorë and Brindisi provided information on the number of passengers travelling through the ports. The emissions are more important outside of the strait’s boundary due to higher distance travelled by the passengers passing by Brindisi.

![Emissions from in-land traffic of passengers in the Strait of Otranto](source: I Care & Consult)

INDUCED ECONOMICAL ACTIVITIES

This source concerns the emissions from the industries and from the cities (residential and commercial emissions from energy consumption) which occur only within the strait’s boundary. It represents 12,632 ktCO2e.

- **Industries**

 Many industries were identified close to the Port of Brindisi. They emitted 11.2 MtCO2e in 2016. The most important emitter of GHG is the Centrale Termoelettrica di Brindisi Sud site (Enel Produzione S.p.A) and the EniPower S.p.A. – Stabilimento di Brindisi, located on the Petrochemical Pole of Brindisi, near the port.

- **Cities**

 The emissions from cities were estimated based on the number of inhabitants in the NUTS 3 region whose shore correspond to the strait (Lecce and Brindisi in Italy). For Albania, which is not part of the European Union, the cities of Vlorë and Durres were taken into account in this study. They emitted about 1,468 ktCO2e in 2016.
Emissions from the induced economical activities (residential and commercial) in the strait’s regions

Figure 114 - Emissions from the Strait of Otranto’s regions (Source: I Care & Consult)
3. Decarbonization paths

In the last years, the threat of climate change is being addressed globally by the United Nations Framework Convention on Climate Change (UNFCCC). The EU emissions represent about 10% of total global emissions and its Member States have ratified the UNFCCC’s Kyoto Protocol in 1997 and the Paris Agreement in 2015, setting emission targets to limit the global emissions and keep global warming below 2°C. The EU aims to decarbonize its energy system and cut its greenhouse gas emissions by 80% to 95% by 2050. To achieve this goal, it has set a binding target of reducing emissions by at least 40% compared to 1990 levels by 2030. Many European countries have adopted national programmes aimed at reducing emissions.

ITALY

Italy adopted its National Energy Strategy in 2017. The document results from a participative process that involved the Italian Parliament, the Regions and over 250 stakeholders, including associations, companies, public entities, citizens and representatives of academia. The objective of the strategy is to make the national energy system more competitive, more sustainable and more secure. The main targets are to reduce the final energy consumption by a total of 10 MtCO$_2$e by 2030, reaching a 28% share of renewables in total energy consumption by 2030 and a 55% share of renewables in electricity consumption by 2030, strengthening supply security, narrowing the energy price gap, furthering sustainable public mobility and eco-friendly fuels and phasing out the use of coal in electricity generation by 2025.

The Italian National Energy Strategy 2017 lays down the actions to be achieved by 2030 in accordance with the long-term scenario drawn up in the EU Energy Roadmap 2050, which provides a reduction of emissions by at least 80% from their 1990 levels.

The target set concerning the greenhouse gas emissions is to reduce them by 39% by 2030 and by 63% by 2050, compared to 1990.

![Figure 115 - Predicted evolution of greenhouse gas emissions in the energy sector (Source: Italian National Energy Strategy, Ministero dello Sviluppo Economico, 2017)](image)

The National Energy Strategy includes sectoral emissions reduction:
- Industry (including energy industry): reduction of emissions by 38% between 2016 and 2030
- Buildings: reduction of emissions by 24% between 2016 and 2030
- Transport: reduction of emissions by 16% between 2016 and 2030
- Agriculture and other emissions: reduction of emissions by 4% between 2016 and 2030

Moreover, many cities in Italy are signatories of the Covenant of Mayors, such as Brindisi. With an adhesion in 2012, Brindisi committed to an overall CO2 emission reduction target of 20% by 2020 compared to 2007 and submitted an action plan, approved in 2014, to achieve this target.

![Greenhouse gas emissions](image)

Figure 116 - Baseline Emission Inventory of Brindisi (Source: Covenant of Mayors)

ALBANIA

Albania’s emissions represent only 0.017% of global emissions and the net per capita GHG emissions was 2.76 tCO2e, which is less than a quarter of the emissions from high-income countries. Even though, Albania is a country with a low-carbon economy and a low per capita GHG emissions, the Albanian government adopted the INDC (Intended Nationally Determined Contributions) document in 2015 and submitted it to the UNFCCC Secretariat. Albania is committed to reduce its CO2 emissions by 11.5% as compared to the baseline scenario for the period 2016 to 2030 and to decouple greenhouse gas emissions from its economic growth. This reduction is equivalent to a CO2 emission reduction of 708 ktCO2e by 2030 and to an increase of the emissions by 47% by 2030 compared to 2009 in the Energy & Transport sector. The long-term goal is to achieve 2 tCO2e/capita in 2050.
In the context of the EU Accession process, Albania also transposes and implements parts of the EU legislation, including legislation on climate change. As one of the Contracting Parties of the Energy Community Treaty, and in line with the EU 20-20-20 objectives, Albania must adopt a binding national target of 38% of renewables in the final total energy consumption of the country in the year 2020 compared to 2009, within the preparation and adoption of a National Renewable Energy Plan, which was adopted in 2016. Moreover, the first endorsed National Energy Efficiency Action Plan also sets a binding target of 9% of energy efficiency in 2018 compared to 2009.

Maritime transport emits around 1,000 MtCO\textsubscript{2}e annually and is responsible for about 2.5% of global greenhouse gas emissions (3rd IMO GHG Study). Shipping emissions are predicted to increase between 50% and 250% by 2050, depending on future economic and energy developments. According to the 2nd IMO GHG Study, ship’s energy consumption and CO\textsubscript{2} emissions could be reduced by up to 75% by applying operational measures and implementing existing technologies. The EU and its Member States have a strong preference for a global approach led by the International Maritime Organization (IMO) to reduce the energy consumption and GHG emissions of the shipping sector57. The European Commission’s 2011 White Paper on transport suggests that the EU’s CO\textsubscript{2} emissions from maritime transport should be cut by at least 40% from 2005 levels by 2050, and if feasible by 50%. However international shipping is not covered by the EU’s current emissions reduction targets.

In 2013, a strategy was set out by the Commission to include maritime emissions into the EU’s policy for reducing its domestic GHG emissions. The strategy consists in three steps:

- Monitoring, reporting and verification of CO\textsubscript{2} emissions from large ships using EU ports
- Greenhouse gas reduction targets for the maritime transport sector

57 Reducing emissions from the shipping sector, European Commission \url{https://ec.europa.eu/clima/policies/transport/shipping_en}
Further measures including market-based measures in the medium to long term

From 2018, the MRV companies (ships over 5000 gross tonnes loading/unloading cargo/passengers at EU maritime ports) are to monitor and report their related CO\textsubscript{2} emissions, submit to an accredited MRV shipping verifier a monitoring plan and submit the verified emissions through THETIS MRV (a dedicated European Union Information system currently under development by the European Maritime Safety Agency).
STRAIT OF OTRANTO

At the strait level, the application of the national objectives (disaggregated by sector) results in a reduction of the emissions by 36% by 2030, compared to 2016. The following table presents the main hypothesis made to estimate the decarbonization path of the Strait of Otranto.

Table 34 - Hypothesis for the estimation of the decarbonization path of the Strait of Otranto

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary)</th>
<th>Source of hypothesis</th>
<th>% of reduction</th>
<th>Emissions 2016 (tCO₂e)</th>
<th>Emissions 2030 (tCO₂e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>European Commission’s target on CO2 emissions from maritime transport</td>
<td>-40% between 2005 and 2050 (corresponding to -12.3% between 2016 and 2030)</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Maritime transport</td>
<td>European Commission’s target on CO2 emissions from maritime transport</td>
<td>-40% between 2005 and 2050 (corresponding to -12.3% between 2016 and 2030)</td>
<td>31 432</td>
<td>27 566</td>
</tr>
<tr>
<td>In-land traffic</td>
<td>Transport target in Italian National Energy Strategy and Albania’s Target in INDC</td>
<td>IT: -16% between 2016 and 2030 AL: +47% between 2009 and 2030 (corresponding to +30.6% between 2016 and 2030)</td>
<td>64 157</td>
<td>58 380</td>
</tr>
<tr>
<td>Industries</td>
<td>Industry target in Italian National Energy Strategy and Albania’s Target in INDC</td>
<td>IT: -38% between 2016 and 2030 AL: +47% between 2009 and 2030 (corresponding to +30.6% between 2016 and 2030)</td>
<td>11 163 390</td>
<td>6 921 302</td>
</tr>
<tr>
<td>Buildings</td>
<td>Building sector target in Italian National Energy Strategy and Albania’s Target in INDC</td>
<td>IT: -24% between 2016 and 2030 AL: +47% between 2009 and 2030 (corresponding to +30.6% between 2016 and 2030)</td>
<td>1 468 585</td>
<td>1 161 873</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>12 727 564</td>
<td>8 169 120</td>
</tr>
</tbody>
</table>

This reduction is due to the actions implemented at all the levels (national, regional, local) and corresponds to the path that is being taken with the actual strategies. The emissions can also be reduced by implementing new actions specifically on the strait’s boundary.
4. Towards the implementation of action plans

The Strait of Otranto developed a joint action plan with the Strait of Corfu contributing to the reduction of the strait’s emissions. The action plan has 5 main actions. These actions are mainly cross-border actions to strengthen the cooperation between the three regions:

- “Local government supporting climate change mitigation”: this action consists of supporting the cities of the strait engaging in the Covenant of Mayors and creating a “Covenant of Otranto Strait Mayors”, as well as establishing an Otranto strait network for mitigation and adaptation to climate change and establishing a Memorandum of Understanding for Climate resilience between the regions (Region of Puglia, region of Ionian Islands and Regional Council of Vlora).
- “Energy efficiency certificate for the port buildings”: this action consists of proposing energy efficiency certificate and measures for the port buildings in Vlora, Corfu and Brindisi, as well as promoting the methodology to be recommended for all public buildings in the regions.
- “Energy efficiency on maritime transport vessels – Green shipping”: this action consists of promoting a green shipping model, securing energy efficiency in maritime vessels by promoting sustainable shipping drivers, research and innovation and policy recommendation.
- “Energy Communities info pack & Awareness raising”: the local communities need to be informed about energy efficiency, climate change and the low carbon economy. A web platform will be developed acting as a knowledge reference point for the support of energy communities.
- “Green certificate for tourism”: this action consists of creating a green certificate for the tourism sector.

The following table presents the actions reducing emissions from each source.
Table 35 - Impacts of the action of the Strait of Otranto on each source of emissions

<table>
<thead>
<tr>
<th>Thematic axes</th>
<th>Cross-border</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>• Energy efficiency certificate for the port buildings</td>
</tr>
<tr>
<td>Maritime traffic</td>
<td>• Energy efficiency on maritime transport vessels – Green shipping</td>
</tr>
<tr>
<td>Induced economical activities</td>
<td>• Local government supporting climate change mitigation</td>
</tr>
<tr>
<td></td>
<td>• Green certificate for tourism</td>
</tr>
</tbody>
</table>
Overview of the baseline study at strait level: Corfu Strait

This chapter presents the main conclusions of the analysis carried out for Corfu Strait.

IDENTITY OF THE STRAIT

The strait in a nutshell
The Strait of Corfu is located between the Albanian shores and the Greek island of Corfu. It is at the junction between the Adriatic Sea to the north and the Ionian Sea to the south.

The strait specificities
• Recent development of the port of Igoumenitsa
• Importance of the other small-scale ports
• Potential for LNG, short sea shipping to be assessed

Main findings
• 358 ktCO₂e were emitted within the Strait of Corfu’s boundary in 2016, equivalent to the average emissions of about 52,700 inhabitants in Europe⁵⁸, which is 0.4% of Greece emissions and 4% of Albanian emissions in 2014⁵⁹.
• The local maritime cruise represents the main emitter of the strait, with 60% of the emissions.
• The road transport linked to the goods and passengers passing by the strait’s ports (Corfu, Saranda and Igoumenitsa) is also an important emitter of the strait.
• The residential and commercial activities of the regions represent a large part of the emissions of the strait.

Decarbonization paths
• Greece and Albania have ambitious targets of reduction of GHG emissions implemented in national strategies:
 o Reduction of emissions by 60% to 70% by 2050 compared to 2005
 o Reduction of emissions by 11.5% by 2030 compared to the baseline scenario in Albania
• The decarbonization path, based on the national targets applied to the strait’s emissions, results in a reduction of the GHG emissions by 13% by 2030 compared to 2016.

⁵⁸ Considering 6.8 tCO₂e/capita. Source: Service of Observation and Statistics in France, based on data by EDGAR, World Bank, 2015
⁵⁹ Considering emissions of 84 MtCO₂e in Greece and 9 MtCO₂e in Albania in 2014. Source: CAIT Climate Data Explorer, World Resources Institute
1. Analysis of the situation at the strait level

Organizational perimeter

Region of Ionian Islands, Innopolis centre and Regional Council of Vlora are the PASSAGE partners. The table below presents the main respective features of their respective regions.

<table>
<thead>
<tr>
<th>The Strait of Corfu</th>
<th>GREECE</th>
<th>ALBANIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PASSAGE administrative authorities</td>
<td>Region of Ionian Islands</td>
<td>Regional Council of Vlora</td>
</tr>
<tr>
<td>Inhabitants</td>
<td>207 855</td>
<td>183 105 inhabitants</td>
</tr>
<tr>
<td>Area (km²)</td>
<td>2 306</td>
<td>2 706</td>
</tr>
<tr>
<td>Density (inhab./km²)</td>
<td>90</td>
<td>138</td>
</tr>
<tr>
<td>Number of district authorities</td>
<td>Corfu Zakynthos Kefalonia, Lefkada and Ithaca</td>
<td>Districts of Vlore, Saranda, Delvinë. 7 municipalities.</td>
</tr>
<tr>
<td>Coastline (km)</td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>Main city and Inhabitants (urban area)</td>
<td>Corfu</td>
<td>Vlora Saranda</td>
</tr>
</tbody>
</table>

The boundaries of the strait were determined as follows:

- The maritime boundary is set according to the boundaries of the NUTS 3 region (Kerkyra and Thesprotia regions in Greece and Vlora region in Albania);
- The Greek border boundary is the Kerkyra and Thesprotia regions (NUTS 3);
- The Albanian border boundary is Saranda, Konispol, Delvinë and Himarë cities.

The following map shows the boundaries of the strait considered here:

![Map of the Strait of Corfu](image)

Figure 119 - Geographical boundary of the strait of the Strait of Corfu (Source: I Care & Consult)
Functional & operational perimeter

Within the strait area, different activities take place and might generate significant GHG emissions, that are not necessarily under the control of the PASSAGE authorities. The perimeter is extended to include the port of Igoumenitsa, due to its significant industrial and freight activity. The section below aims to list the main activities within the considered perimeter.

Although the **port of Igoumenitsa** is not part of the PASSAGE administrative perimeter, it is relevant to include it into the operational perimeter. Indeed, the new Port of Igoumenitsa is one of one of the biggest Ro-Ro ports of international transport in Greece and the Eastern Mediterranean. However, not much information was provided by the Port of Igoumenitsa, which means that the emissions are not estimated in their entirety.

Igoumenitsa changed overnight with the opening of Egnatia Odos highway which now connects Turkey with the Adriatic. It is no longer a small provincial town of a few thousand inhabitants close to the Albanian border.

The Greek Port of Igoumenitsa is a freshly discovered destination (2.5 million passengers consisting of both cruise and ferry) that is on the port of calls list for 6 cruise ship companies, namely Costa Crocere, Holland America Line, Oceania Cruises, Louis Cruises, Saga Cruise and Silversea.

The Port of Corfu is mainly a passenger port. In 2011, the port accepted the visit of 453 cruise ships, carrying 594 000 passengers, of which over 60% disembarked to visit the island. The total number of vehicle movements exceeded 400 000 and passengers over 2 000 000 arriving from mainland Greece and Italy.

As suggested by the literature review, the sea-based activity must be the main GHG source of emissions within a strait. The key figures of the main maritime traffic occurring in the Corfu strait are reported below:

- **The local maritime traffic** concerns the trips, by ferries, between Corfu and Igoumenista, Corfu and Sarande and Corfu and Othonoi, Erikousa and Mathraki. This traffic represents almost 15 400 trips in 2016, mainly in the Corfu-Igoumenitsa line, according to the Port of Corfu. About 1.6 million passengers were transported across the strait.

![Repartition of passengers on the ferry lines of the local maritime traffic](Source: I Care & Consult based on data provided by the Port of Corfu)
The maritime traffic with calls at the strait’s ports (Corfu, Igoumenitsa and Saranda) concerns all the ships arriving at and leaving from the strait’s ports, except for the ferries that are included in the local maritime transport. The Port Call Statistics of each port contains information about the type of vessel calling to the port, as well as the port of origin and destination, the weight carried and other information about the size of the ships. The Port of Igoumenitsa handled more than 247,000 trucks and 2.4 million passengers in 2016 (including the passengers travelling between Corfu and Igoumenitsa, representing 1.5 million passengers). The Ancona-Igoumenitsa-Patras route is the main link between continental Europe and the South-East Med (in 2011: 1.7 Million of Tons (86.5% of Ancona freight traffic on Ro-Ro), 103,992 Trucks, 10,460 Trailers). The average characteristics of vessels in the South-Eastern European Motorways of the Sea Corridor are presented below (Source: Fundación Valencia Port (2014) based on the MED Short-Sea Lines database).

<table>
<thead>
<tr>
<th>Route</th>
<th>Traffic</th>
<th>No Vessel</th>
<th>GT</th>
<th>Year built</th>
<th>Service speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCONA - IGOU Menitsa - PATRAS - IGOU Menitsa</td>
<td>RO-PAX</td>
<td>3</td>
<td>154,739</td>
<td>2008</td>
<td>22.5</td>
</tr>
<tr>
<td>BRINDISI - CORFU - IGOU Menitsa - PATRAS</td>
<td>RO-PAX</td>
<td>2</td>
<td>51,979</td>
<td>2003</td>
<td>21.2</td>
</tr>
<tr>
<td>PATRAS - IGOU Menitsa - BARI - IGOU Menitsa</td>
<td>RO-PAX</td>
<td>2</td>
<td>51,275</td>
<td>2008</td>
<td>21.6</td>
</tr>
</tbody>
</table>

The Port of Corfu is mainly a passenger port, more than 1.7 million passengers passed through the port in 2016, representing more than 16,000 calls (mainly on the Corfu-Igoumenitsa line). The Port of Saranda handled 8,386 tonnes of freight in 2016 and 251,311 passengers. 8 general cargoes and 38 cruise ships called to the Port of Saranda in 2016.

The transit maritime cruise concerns the vessels passing through the Strait of Corfu without any calls to the strait’s ports. This doesn’t represent a lot of vessels and was considered negligible in this study.
IN-LAND TRAFFIC

In this section, the traffic related to the ports is considered, as it includes the majority of freight and passengers generated by the strait.

In Igoumenitsa, it is estimated that the planned creation of a freight centre will greatly increase the commercial traffic and turn the city of Igoumenitsa into an international logistics centre.

All the goods are transported to their next destination by road in Greece and in Albania as no railways serve the strait. A distance of 60 km in Greece and 248 km in Albania was considered to estimate the GHG emissions from road transportation. Concerning the passengers, a distance of about 24 km in Corfu, 470 km in Igoumenitsa and 248 km in Saranda was considered.

The following table presents the quantity of goods that were handled in the ports and transported in the hinterland:

<table>
<thead>
<tr>
<th>Port</th>
<th>Quantity of goods</th>
<th>Number of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corfu</td>
<td>88 333 trucks</td>
<td>1 782 581</td>
</tr>
<tr>
<td>Igoumenitsa</td>
<td>247 003 trucks</td>
<td>2 426 880</td>
</tr>
<tr>
<td>Saranda</td>
<td>8 386 tonnes</td>
<td>251 311</td>
</tr>
</tbody>
</table>

INDUSTRIES

There is little specific industry linked to the strait. Only one industry was identified in Igoumenitsa, *Yioi Nikoy A.E.B.E*, a manufacture of ceramics.

CITIES & TOWNS

The regions of Kerkyra (Greece) and Thesprotia (Greece) and the cities of Saranda, Konispol, Himarë and Delvinë (Albania) also produce emissions due to the energy consumption of residential and commercial sectors. Those emissions are estimated based on the population of the strait’s main regions and cities and the national GHG inventory.
Figure 122 - Population of the main regions of the Strait of Corfu (Source: I Care & Consult from data by Eurostat – NUTS 3)
Schematic representation of the strait

Figure 123 - Schematic “choreme” representation of the Strait of Corfu (Source: I Care & Consult)
Geographic representation of the strait

This map presents the main distances considered within the boundary based on the geographic boundary of the strait, as defined in the methodological note. The NUTS3 regions were considered to delimit the maritime boundary of the strait.

Figure 124 - Representation of the geographical boundary of the strait (Source: I Care & Consult)
2. GHG emissions and key priorities for future actions

This section aims to gather the main GHG emissions sources within the strait perimeter. The latter are calculated thanks to the data collected from existing studies carried out by the PASSAGE administrative authorities, the local stakeholders, the literature reviews, and processed by I Care & Consult.

The Strait of Corfu emitted 358 ktCO$_2$e in 2016. The main source of emission is the maritime transport with 64% of the total emissions, followed by the induced economical activities representing 22% of the total emissions and the in-land transport representing 14%. The emissions are mainly impacted by the emissions from the local maritime cruise between Corfu and Igoumenitsa, representing 52% of the emissions within the strait’s boundary. It is important to note that some emission sources were not estimated based on a lack of data (such as the emissions from the ports operations as well as the emissions from the maritime transport with calls to the Port of Igoumenitsa).

![Diagram: Emissions within the Strait of Corfu's boundary]

Figure 125 - Repartition of emissions from the Strait of Corfu (Source: I Care & Consult)

Table 38 - Repartition of emissions from the Strait of Corfu, per source

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary)</th>
<th>Albania</th>
<th>Cross-border</th>
<th>Greece</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy consumption</td>
<td>NC</td>
<td></td>
<td>NC</td>
</tr>
<tr>
<td>Ships in port areas</td>
<td>NC</td>
<td></td>
<td>NC</td>
</tr>
<tr>
<td>Maritime transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local maritime cruise</td>
<td></td>
<td>214 443</td>
<td></td>
</tr>
<tr>
<td>Maritime cruise with calls to the strait’s ports</td>
<td></td>
<td>16 435</td>
<td></td>
</tr>
<tr>
<td>Transit maritime cruise</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>In-land traffic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road transport</td>
<td>4 888</td>
<td></td>
<td>45 420</td>
</tr>
<tr>
<td>Railway transport</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Induced economical activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industries</td>
<td>0</td>
<td></td>
<td>1 556</td>
</tr>
<tr>
<td>Cities</td>
<td>9 302</td>
<td></td>
<td>66 167</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14 190</td>
<td>230 878</td>
<td>113 143</td>
</tr>
</tbody>
</table>
The emissions due to the strait’s activity but emitted outside of the boundary (due to in-land and maritime transport outside of the boundary) were also estimated. Considering these indirect emissions, the strait is responsible for the emissions of 521 ktCO$_2$e, from which 69% are emitted within the boundary. It is important to note that some of the indirect emission sources could not be estimated due to lack of information (such as the out-boundary maritime transport from cruises calling to the Ports of Corfu and Sarandé).

PORTS

These emissions concern the emissions from the energy consumption of the ports and from the ships in port areas (manoeuvring and at berth, consuming energy for the main and auxiliary engines). These emissions are occurring within the strait’s boundary. Due to a lack of information, they were not estimated in this study.

MARITIME TRAFFIC

These emissions concern the emissions from the maritime transport within the strait’s boundary. They represent 64% of the total emissions.

- **Local maritime cruise**

These sources of emissions concern the ferries navigating between Corfu and Igoumenitsa, Sarandë and the Othonoi, Erikousa and Mathraki islands and occur only within the strait’s boundary. It represents 214 ktCO$_2$e, 93% of the emissions from maritime transport and more than 60% of the total emissions.

In 2016, more than 1.6 million passengers travelled between the ports of the strait, mainly between Corfu and Igoumenitsa (more than 1.5 million passengers and 13 367 trips).

![Figure 126 - Repartition of emissions from local maritime transport (Source: I Care & Consult, based on data provided by the Port of Corfu)](image)

- **Maritime cruise with ships calling at the strait’s ports**

These sources of emissions concern all the ships calling at each of the strait’s ports (Igoumenitsa, Corfu and Saranda) travelling to or from a port outside of the strait. It represents 16.4 ktCO$_2$e, 7% of the emissions from maritime transport. This only includes the part of the trip that is realized within the strait’s boundary. It is important to note that, due to a lack of information on the number of calls and origin/destination of the vessels...
in the port of Igoumenitsa, the emissions could not be estimated. This emission source is therefore likely to be underestimated.

Most of the emissions come from the Port of Corfu (826 vessels calling at the port). Most of the emissions from the ships calling at the Port of Corfu are from the cruise ships, as well as the ferries. The main emissions from the Port of Saranda (46 vessels calling at the port) come from the general cargo ships and the cruise ships.

- Transit maritime cruise

The transit maritime cruise is considered to be negligible.

IN-LAND TRAFFIC

These emissions concern the emissions from in-land transport (road and railway transport) within the strait’s boundary. They represent 14% of the total emissions.

Road transport is the most important source of in-land traffic emissions and represents about 50.3 ktCO\textsubscript{2}e.

Concerning the freight traffic, the port of Igoumenitsa has the highest emissions due to large number of trucks handled in the port. Road transport is the most important source of emissions and most of the emissions occur within the strait’s boundary.

![Emissions from in-land traffic of freight in the Strait of Corfu](Source: I Care & Consult)

Concerning the passenger traffic, as the Port of Igoumenitsa welcomed more passengers than the Port of Corfu and Saranda, the emissions are higher. The out-boundary emissions from Corfu are lower than the out-boundary emissions from Saranda, even though the number of passengers is higher, because the distance travelled outside the boundary is lower, Corfu being an island.
This source concerns the emissions from the industries and cities (residential and commercial emissions from energy consumption) which occur only within the strait’s boundary. It represents 77 ktCO₂e, which represents 22% of the total emissions.

- **Industries**

 Only one industry was identified close to the Port of Igoumenitsa. It emitted 1.6 ktCO₂e in 2016. It represents less than 1% of the emissions within the strait’s boundary.

- **Cities**

 The emissions from the cities were estimated based on the number of inhabitants in the NUTS 3 region which shore correspond to the strait (Kerkyra, Thesprotia) and the cities on the Albanian coast (Saranda, Konispol, Himarë and Delvinë). They emitted about 75.5 ktCO₂e in 2016.
3. Decarbonization paths

In the last years, the threat of climate change is being addressed globally by the United Nations Framework Convention on Climate Change (UNFCCC). The EU emissions represent about 10% of total global emissions and its Member States have ratified the UNFCCC’s Kyoto Protocol in 1997 and the Paris Agreement in 2015, setting emission targets to limit the global emissions and keep global warming below 2°C. The EU aims to decarbonize its energy system and cut its greenhouse gas emissions by 80% to 95% by 2050. To achieve this goal, it has set a binding target of reducing emissions by at least 40% compared to 1990 levels by 2030. Many European countries have adopted national programmes aimed at reducing emissions.

ALBANIA

Albania’s emissions represent only 0.017% of global emissions and the net per capita GHG emissions was 2.76 tCO₂e, which is less than a quarter of the emissions from high-income countries. Even though, Albania is a country with a low-carbon economy and a low per capita GHG emissions, the Albanian government adopted the INDC (Intended Nationally Determined Contributions) document in 2015 and submitted it to the UNFCCC Secretariat. Albania is committed to reduce its CO₂ emissions by 11.5% as compared to the baseline scenario for the period 2016 to 2030 and to decouple greenhouse gas emissions from its economic growth. This reduction is equivalent to a CO₂ emissions reduction of 708 ktCO₂e by 2030 and to an increase of the emissions by 47% by 2030 compared to 2009 in the Energy & Transport sector. The long-term goal is to achieve 2 tCO₂e/capita in 2050.

Figure 5.23 Baseline Scenario, Mitigation Scenario and the evaluated reduction potential of GHG emissions (in Gg of CO₂ eq.) from the energy & transport sector

Figure 130 - Evolution of Emissions from energy & transport in the Baseline and Mitigation scenarios (Source: Third National Communication of the Republic of Albania on Climate Change)

In the context of the EU Accession process, Albania also transposes and implements parts of the EU legislation, including legislation on climate change. As one of the Contracting Parties of the Energy Community Treaty, and in line with the EU 20-20-20 objectives, Albania had to adopt a binding national target of 38% of renewables in the final total energy consumption of the country in the year 2020 compared to 2009, within the preparation and adoption of a National Renewable Energy Plan, which was adopted in 2016. Moreover, the first endorsed National Energy Efficiency Action Plan also sets a binding target of 9% of energy efficiency in 2018 compared to 2009.
Greece has already achieved a 31% reduction in emissions between 2005 and 2015.

According to the European Commission on the third report on the State of the Energy Union in November 2017, Greece is at an initial stage regarding the development of an integrated national energy and climate plan for the years 2021 – 2031. Greece is planning to establish a ministerial steering committee and will be supported by technical working groups with the participation of different authorities and research centres institutions. No targets for energy efficiency and renewable energy beyond 2020 have yet been set.

The Greek 2050 Energy Roadmap was published in 2012 and aims at a reduction of 60 to 70% of CO$_2$ emissions from the energy sector by 2050 compared to 2005. Considering the “existing policies” scenario, in 2030, a reduction of emissions by 33% compared to 2005 can be observed.
Maritime transport emits around 1 000 MtCO₂e annually and is responsible for about 2.5% of global greenhouse gas emissions (3rd IMO GHG Study). Shipping emissions are predicted to increase between 50% and 250% by 2050, depending on future economic and energy developments. According to the 2nd IMO GHG Study, ship’s energy consumption and CO₂ emissions could be reduced by up to 75% by applying operational measures and implementing existing technologies. The EU and its Member States have a strong preference for a global approach led by the International Maritime Organization (IMO) to reduce the energy consumption and GHG emissions of the shipping sector. The European Commission’s 2011 White Paper on transport suggests that the EU’s CO₂ emissions from maritime transport should be cut by at least 40% from 2005 levels by 2050, and if feasible by 50%. However international shipping is not covered by the EU’s current emissions reduction targets.

In 2013, a strategy was set out by the Commission to include maritime emissions into the EU’s policy for reducing its domestic GHG emissions. The strategy consists in three steps:

- Monitoring, reporting and verification of CO₂ emissions from large ships using EU ports
- Greenhouse gas reduction targets for the maritime transport sector
- Further measures including market-based measures in the medium to long term

From 2018, the MRV companies (ships over 5000 gross tonnes loading/unloading cargo/passengers at EU maritime ports) are to monitor and report their related CO₂ emissions, submit to an accredited MRV shipping verifier a monitoring plan and submit the verified emissions through THETIS MRV (a dedicated European Union Information system currently under development by the European Maritime Safety Agency).

At the strait level, the application of the national objectives (disaggregated by sector) results in a reduction of the emissions by 13% by 2030, compared to 2016. The following table presents the main hypothesis made to estimate the decarbonization path of the Strait of Corfu.

<table>
<thead>
<tr>
<th>Emission source (within the strait’s boundary)</th>
<th>Source of hypothesis</th>
<th>% of reduction</th>
<th>Emissions 2016 (tCO$_2$e)</th>
<th>Emissions 2030 (tCO$_2$e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>European Commission’s target on CO2 emissions from maritime transport</td>
<td>-40% between 2005 and 2050 (corresponding to -12.3% between 2016 and 2030)</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Maritime transport</td>
<td>European Commission’s target on CO2 emissions from maritime transport</td>
<td>-40% between 2005 and 2050 (corresponding to -12.3% between 2016 and 2030)</td>
<td>230 878</td>
<td>201 718</td>
</tr>
<tr>
<td>In-land traffic</td>
<td>Greek 2050 Energy Roadmap and Albania’s Target in INDC</td>
<td>GR: -33% between 2005 and 2030 (corresponding to -18.2% between 2016 and 2030)</td>
<td>50 308</td>
<td>43 537</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AL: +47% between 2009 and 2030 (corresponding to +30.6% between 2016 and 2030)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industries</td>
<td>Greek 2050 Energy Roadmap and Albania’s Target in INDC</td>
<td>GR: -33% between 2005 and 2030 (corresponding to -18.2% between 2016 and 2030)</td>
<td>1 556</td>
<td>1 273</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AL: +47% between 2009 and 2030 (corresponding to +30.6% between 2016 and 2030)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buildings</td>
<td>Greek 2050 Energy Roadmap and Albania’s Target in INDC</td>
<td>GR: -33% between 2005 and 2030 (corresponding to -18.2% between 2016 and 2030)</td>
<td>75 469</td>
<td>66 273</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AL: +47% between 2009 and 2030 (corresponding to +30.6% between 2016 and 2030)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>358 210</td>
<td>312 800</td>
</tr>
</tbody>
</table>

This reduction is due to the actions implemented at all the levels (national, regional, local) and corresponds to the path that is being taken with the actual strategies. The emissions can also be reduced by implementing new actions specifically on the strait’s boundary.
4. Towards the implementation of action plans

The Strait of Corfu developed a joint action plan with the Strait of Otranto contributing to the reduction of the strait’s emissions. The action plan has 5 main actions. These actions are mainly cross-border actions to strengthen the cooperation between the three regions:

- “Local government supporting climate change mitigation”: this action consists of supporting the cities of the strait engaging in the Covenant of Mayors and creating a “Covenant of Otranto Strait Mayors”, as well as establishing an Otranto strait network for mitigation and adaptation to climate change and establishing a Memorandum of Understanding for Climate resilience between the regions (Region of Puglia, region of Ionian Islands and Regional Council of Vlora).

- “Energy efficiency certificate for the port buildings”: this action consists of proposing energy efficiency certificate and measures for the port buildings in Vlora, Corfu and Brindisi, as well as promoting the methodology to be recommended for all public buildings in the regions.

- “Energy efficiency on maritime transport vessels – Green shipping”: this action consists of promoting a green shipping model, securing energy efficiency in maritime vessels by promoting sustainable shipping drivers, research and innovation and policy recommendation.

- “Energy Communities info pack & Awareness raising”: the local communities need to be informed regarding energy efficiency, climate change and low carbon economy. A web platform will be developed acting as a knowledge reference point for the support of energy communities.

- “Green certificate for tourism”: this action consists in creating a green certificate for the tourism sector.

The following table presents the actions reducing emissions from each source.
Table 40 - Impact of the actions of the Strait of Corfu on each emission source

<table>
<thead>
<tr>
<th>Thematic axes</th>
<th>Cross-border</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port operations</td>
<td>• Energy efficiency certificate for the port buildings</td>
</tr>
<tr>
<td>Maritime traffic</td>
<td>• Energy efficiency on maritime transport vessels – Green shipping</td>
</tr>
<tr>
<td>Induced economical activities</td>
<td>• Local government supporting climate change mitigation</td>
</tr>
<tr>
<td></td>
<td>• Green certificate for tourism</td>
</tr>
</tbody>
</table>
Annexes

1. Carbon footprint methodologies and key studies

a) Port level

The WPCI\(^6\) (World Ports Climate Initiative) developed a free on-line carbon footprinting calculator (scope 1, 2 and 3), that gave the ports guidance and an operational calculating tool to start developing a GHG inventory\(^6\).

The WPCI has been launched in 2008 under the initiative of the *International Association of Ports and Harbors* (IAPH) and gathers 55 of the world’s key ports. They all adopted the “C40\(^6\) World Ports Climate Declaration”, to mitigate the GHG emissions related to ports and port operations, while maintaining their roles as transportation and economic hubs.

Amongst the PASSAGE project stakeholders, the ports of Tallinn and Dunkirk are members of the WPCI. The Finnish Port Association was also one of the participating ports to the WPCI project “Carbon Footprinting Guidance Document”, which is led by the port of Los Angeles.

As transportation hubs for sea-based and land-based activities, ports are crucial stakeholders within a strait. The GHG emissions assessment generated in their operational perimeter has been the subject of some scientific works. Two of them are briefly presented below.

At a port activity level, Winnes H. et al. has carried out *Reducing GHG emissions from ships in port areas; a case study of the Port of Gothenburg in 2010*. Five different operational modes have been identified and considered to calculate the port GHG emissions (see graph opposite).

The study provides quantification of the potential reduction in ships’ GHG emissions that ports might implement, as well as projections and scenarios.

![Figure 134 - GHG emissions divided in five different operational modes, from ships to and from Port of Gothenburg in 2010](Source: Winnes H. et al.)

In *Estimating GHG emissions of marine ports – The case of Barcelona* (2011), Villalba and Gemechu asked different stakeholders to collect data and to assess land-based and vessel movement emissions in the port area. For example, a collaborative work with the port authority enabled reliable data on vessel operations to be collected. It is calculated that half of the 331 390 tonnes of CO\(_2\) equivalents of the Port of Barcelona in 2008 are due to land-based activities, namely energy consumption. The vessel

\(^6\) http://wpci.iaphworldports.org/

\(^6\) http://wpci.iaphworldports.org/carbon-footprinting/

\(^6\) C40 is mainly known as the “C40 cities” network, which is a climate leadership group. See following section.
movement emissions in the port limits (ships arriving/departing into/from the port, manoeuvring, hotelling) reached 175 184 tonnes of CO₂ equivalents.

b) Logistics and maritime traffic

As straits are significant maritime and in-land transportation hubs, the GLEC framework 65 (Global Logistics Emissions Council Framework) is a relevant tool to assess the related GHG emissions. Indeed, as stated by Blanco 66 and reminded in the GLEC framework, “there are inherent differences in both the amount and the detail of the data available to the different stakeholders throughout the transport chain”.

The methodology has been designed as a company-specific guidance to join forces with the GHG Protocol Corporate Standard. For each mode of transportation, it provides a synthetic analysis namely similarities, differences, uncertainties etc. of the main base methodologies identified.

Among the rich bibliography dealing with maritime traffic related GHG emissions (some are also dealing in parallel with the port area ones) one of the most relevant scientific paper that has been identified is *A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011*. AIS 67 data and the STEAM 68 emission model have been used to model emissions (CO₂, NOx, SOx, CO, and PM2.5) induced by ship traffic in European sea areas. The figure below presents the geographic distribution of shipping emissions of CO₂. Among the 30 “hotspots” identified in terms of ship emissions in 2011, some are part of the PASSAGE project area: English Channel, Gulf of Fehmarn, Tallinn harbour, Livorno harbour.

67 Automatic Identification System
68 Ship Traffic Emission Assessment Model
Another relevant methodological approach using AIS data to calculate maritime traffic CO₂ emissions in a strait was proposed in 2010 by See Chuan Leong and al.: *Estimation of CO₂ Emission from Marine Traffic in Singapore Straits Using AIS Data*. By assessing the GHG emissions by ship type daily, it has been demonstrated that such a tool is vital for port authorities to manage their emissions, and that quite simple solutions like reducing operational speed and increasing gross tonnage could lead to compliance with IMO (International Maritime Organization) GHG target. During the monitoring period (January to June 2014), they estimated that on average, each ship emitted 14 432 tons of CO₂ daily.

AIS²⁹ data and the STEAM³⁰ emission model have also been used by Tichavska and Tovar in *Port-city Exhaust Emission Model: an approach to Cruise and Ferry operations in Las Palmas Port*. This methodology enables both CO₂ and air pollutant emissions (NOx, SOx, PM, CO) to be assessed and classified in four mains classes: hotelling, manoeuvring, cruising operations and weight.

In *The role of sea ports in end-to end maritime transport chain emissions* (2014), Gibbs et al. use the UK – Department for Transport (DFT) Maritime Statistics Data to assess some Great British port GHG emissions.

²⁹Ibid.
³⁰Ibid.
c) Cities and hinterland activities

The GHG protocol for Cities71 (Global Protocol for Community-Scale GHG Emission Inventories – GPC) has similar strait hinterland issues, as these territories have different types of economic activities (cities, industries, transportation, etc.) and possibly different ways to account their GHG emissions.

It provides reporting and accounting principles at a territorial scale, for instance, to define the inventory boundary. It also brings global and sector-specific accounting and reporting guidance. Furthermore, the methodology enables stakeholders to understand how a GHG inventory can be used to set mitigation goals and track performance over time. The “GPC protocol” is an accounting-reporting standard for cities, which has been developed by World Resources Institute, C40 Cities Climate Leadership Group and ICLEI – Local Governments for Sustainability (ICLEI). It is one of the standard coming from the GHG Protocol Initiative, a partnership launched at the end of 1990’s between the World Resources Institute (WRI) and the World Business Council for Sustainable Development (WBCSD).

In The role of sea ports in end-to end maritime transport chain emissions (Gibbs and al. 2014), the road traffic emissions, which might be considered as hinterland activities, are assessed.

It is demonstrated that the road GHG annual emissions (138 kt of CO\textsubscript{2}) of the UK’s busiest container port of Felixstowe are twice higher than the port ones (71.5 kt of CO\textsubscript{2}).

![Figure 137 - Comparison of CO2 emission sources at Felixstowe port (Source: Gibbs and al. 2014)](http://www.ghgprotocol.org/greenhouse-gas-protocol-accounting-reporting-standard-cities)

In comparison, the International Shipping OGV (Ocean Going Vessels) emissions seem to be huge, but it is worth noting that they are assessed for the overall origin-destination distance of the journey.

Other in-land activities are also generating GHG emissions within a strait area, like cities, industries or companies. These stakeholders carry out GHG inventories due to legal obligation or on voluntary bases.

For instance, through the Covenant of Mayors for Climate & Energy and the setting of its Sustainable Energy Action Plan (SEAP), the Livorno municipality (Corsica Channel) has carried a GHG inventory.

In the industry sector, company emissions could be registered in on-line data base, like in France in the IREP data base which collect pollutant emissions from the main industrial companies.

71 http://www.ghgprotocol.org/greenhouse-gas-protocol-accounting-reporting-standard-cities
Other types of companies operating at a strait level might also achieve out GHG inventory, like the Getlink Group (formerly Eurotunnel Group). At cross-border scale (UK + France) and every two years, Carbon Trust Standard realizes a GHG inventory audit, and the Getlink Group also discloses for the same perimeter the GHG emissions in the yearly registration document. The Port of Dover is also a Carbon Trust Standard holder and aims to become a carbone neutral port.

On the French shore, Eurotunnel has achieved a legally obligated carbone footprint in 2012 and 2015. Since the first GHG inventory has been carried out at cross-border scale (2006, sea breakdown in the chart opposite), Eurotunnel has set several measures to reduce their GHG emissions.

![Carbon footprint]

Figure 138 - Eurotunnel GHG emissions (Source: Eurotunnel, Environmental Report 2007)

2. Calculation methodologies

a) Port operations

i. Energy consumptions

The energy consumptions (such as electricity, natural gas, diesel, petrol, propane...) are provided by the Port Authority. The emission factors are taken from the national databases when available:

- France: ADEME Base Carbone\(^{72}\) (Environment and Energy Management Agency), last updated in 2016, except for the electricity emission factor which was updated in 2014.
- UK: DEFRA / DECC\(^{73}\) (Department for Environment Food & Rural Affairs and Department of Energy & Climate Change), last updated in 2016.
- Finland: Motiva\(^{74}\), last updated in 2017 and Helsinki-Uusimaa Regional Council\(^{75}\), last updated in 2015.

\(^{72}\) www.bilans-ges.ademe.fr

\(^{74}\) https://www.motiva.fi/ratkaisut/energiankaytto_suomessa/co2-laskentaohje_energiankulutuksen_hillidoksidipaaastojen_laskentaan/co2-paastokertoimet

\(^{75}\) https://www.uudenmaanliitto.fi/tietopalvelut/uusimaa-tietopankki/aineistot/alue_ ja_ymparisto
For the other countries, where no national database was found, the IEA (International Energy Agency) factors specific to the country are used for electricity consumption and the DEFRA or IPCC (Intergovernmental Panel on Climate Change) standard factors are used for fuel consumption.

ii. Ships in port areas

To estimate the annual emissions from the ships in port areas (manoeuvring, at berth, etc.), the following equation is used (from the publication “Estimating GHG emissions of marine ports – the case of Barcelona” by Gara Villalba and Eskinder Demisse Gemechu):

\[
Emission (tCO_{2e}) = N \times PO (kW) \times t (hours) \times LF (\%) \times EF (tCO_{2e}/kWh)
\]

With:
N = Number of ships calling to the port
PO = power output in KW
t = time spent in the port in the mode considered in hours
LF = load factor
EF = emission factor in tCO_{2e}/kWh

This equation is used to estimate the emissions from the main engine and the auxiliary engine in the different modes (manoeuvring, at berth, etc.).

- Number of ships per type

The number of ships calling to the port for 2016 is provided by the Port Authority, per type of ship if available.

- Power output

The power output of each engine depends on the type of ship and the size (gross tonnage). When local data is available, it is directly used to estimate the emissions. When no local data is available, the European Environment Agency (EEA) provides, in the “EMEP/EEA air pollutant emission inventory guidebook” from 2002, a table with the estimated main engine power and auxiliary engine power by ship type and gross tonnage. As the gross tonnage is not always known, the average for all ships is taken into account, as indicated in the table below:

<table>
<thead>
<tr>
<th>Ship type</th>
<th>Estimated main engine power (kW) – total power of all engines</th>
<th>Estimated auxiliary power kW (medium speed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquefied gas tanker</td>
<td>5 900</td>
<td>300</td>
</tr>
<tr>
<td>Chemical tanker</td>
<td>5 700</td>
<td>300</td>
</tr>
<tr>
<td>Other tanker</td>
<td>7 900</td>
<td>300</td>
</tr>
<tr>
<td>Bulk dry cargo</td>
<td>9 100</td>
<td>380</td>
</tr>
<tr>
<td>General cargo</td>
<td>3 300</td>
<td>175</td>
</tr>
<tr>
<td>Container</td>
<td>16 300</td>
<td>1 400</td>
</tr>
<tr>
<td>Passenger/ Ro-ro</td>
<td>12 800</td>
<td>1 000</td>
</tr>
</tbody>
</table>
Time spent in port areas

This data is provided by the Port Authority, per type of ship when available.

Load factor

As engines are not operating at their maximum tested power, the load factor needs to be considered. When local data is available, it is used directly to estimate the emissions. However, when no data is available, two modes are considered: manoeuvring and in port (including the un-loading, loading and hoteling phases). The following hypothesis, from the report “Quantification of emissions from ships associated with ship movements between ports in the European Community” by the European Commission (2002), are taken into consideration:

<table>
<thead>
<tr>
<th>Mode</th>
<th>% load of MCR for Main Engine operation</th>
<th>% load of MCR for Auxiliary Engine operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manoeuvring</td>
<td>20%</td>
<td>50%</td>
</tr>
<tr>
<td>In port</td>
<td>20%</td>
<td>40%</td>
</tr>
<tr>
<td>At sea</td>
<td>80%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Emission factors

As recommended in the publication “Estimating GHG emissions of marine ports – the case of Barcelona” by Gara Villalba and Eskinder Demisse Gemechu, the following emission factors are considered (taken from ICF International, 2009):

- For primary engine at intermediate speed: 677.91 gCO$_2$/kWh and 0.004 gCH$_4$/kWh, corresponding to 678 gCO$_2$e/kWh;
- For auxiliary engine: 722.54 gCO$_2$/kWh and 0.004 gCH$_4$/kWh corresponding to 722.6 gCO$_2$e/kWh.

b) Maritime transport

i. Local maritime cruise

The number of trips by ferries between the two shores in 2016 is provided by the Port Authorities or the Maritime Companies. The distance travelled is estimated with the websites “searoutes.com” and “sea-distances.org”.

The emission factor used is taken from the Base Carbone (ADEME, France): 419 kgCO2e/km for Ro-Pax cargoes – passengers.

ii. Maritime cruise with calls to the strait’s ports

The Port Call Statistics in 2016 are provided by the Port Authorities, containing if possible the type of ship, the weight transported by each ship and the origin/destination. When all the information is available, the following equation is used to estimate the emissions:

\[\text{Emissions of one ship (tCO2e)} = d \text{ (km)} \times w \text{ (tonnes)} \times EF \text{ (tCO2e/t.km)} \]

With:
- \(d \) = distance travelled by the ship. This distance is disaggregated between the distance within the strait’s boundary and outside the strait’s boundary.
- \(w \) = weight transported by the ship.
- \(EF \) = emission factor

➢ Distance

The distance is estimated based on the country of origin/destination following “the CERDI-seadistance database” (by Bertoli S., Goujon M. and Santoni O. in 2016).

The distance within the strait’s boundary is determined with Google Earth, based on the distance of the strait (see figures in the preceding chapter), the location of the port within the strait and the direction of the vessels. The distance was determined as showed in the following figure (in blue), with the distance from the port (here Tallinn) to the centre of the strait added to the distance from the centre to the limits of the boundary:

![Figure 139 - Example of the determination of the distance within the strait's boundary (Source: I Care & Consult)](image)

The following table presents the distances for each port, depending on the direction of the vessel. Those distances can also be seen in the figures of the geographic strait boundary.
Table 43 - Distances within the strait’s boundary for each port (Source: I Care & Consult)

<table>
<thead>
<tr>
<th>Strait</th>
<th>Ports</th>
<th>Distance from North / East (km)</th>
<th>Distance from South / West (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dover / Pas de Calais</td>
<td>Calais</td>
<td>47</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Boulogne-sur-Mer</td>
<td>87</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Dunkirk</td>
<td>45</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Dover</td>
<td>62</td>
<td>81</td>
</tr>
<tr>
<td>Gulf of Finland</td>
<td>Helsinki</td>
<td>94</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Tallinn</td>
<td>123</td>
<td>105</td>
</tr>
<tr>
<td>Corsica Channel</td>
<td>Bastia</td>
<td>79</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Livorno</td>
<td>63</td>
<td>114</td>
</tr>
<tr>
<td>Strait of Otranto</td>
<td>Vlorë</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Durres</td>
<td>95</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Brindisi</td>
<td>94</td>
<td>130</td>
</tr>
<tr>
<td>Strait of Corfu</td>
<td>Sarandë</td>
<td>50</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Igoumenitsa</td>
<td>/</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Corfu</td>
<td>/</td>
<td>43</td>
</tr>
</tbody>
</table>

The distance outside the strait’s boundary is determined by subtracting the distance within the strait’s boundary to the total distance between the two ports (on within the strait and the other anywhere in the world).

- In the case of the strait of Corfu, given the geography of the strait, almost no ships travel towards the north/east side of the strait, from the ports of Corfu or Igoumenitsa and no ships travel towards the south/west side of the strait from the port of Sarandë. Therefore, the distances linked to those sides are not considered here. **Emissions factors**

The following emission factors are used (from DEFRA/DECC, updated in 2016):

Table 44 - Emission factors per type of ship (Source: DEFRA/DECC, 2016)

<table>
<thead>
<tr>
<th>Type of vessel</th>
<th>Emission factor (in kgCO₂e/t.km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk carriers</td>
<td>0.0042</td>
</tr>
<tr>
<td>Container</td>
<td>0.0190</td>
</tr>
<tr>
<td>Gas carriers</td>
<td>0.0136</td>
</tr>
<tr>
<td>General dry cargo</td>
<td>0.0156</td>
</tr>
<tr>
<td>Passengers ships</td>
<td>0.4581</td>
</tr>
<tr>
<td>Roro</td>
<td>0.0607</td>
</tr>
<tr>
<td>Tankers</td>
<td>0.0106</td>
</tr>
<tr>
<td>Other (average emission factor)</td>
<td>0.0123</td>
</tr>
</tbody>
</table>

The weight is usually provided in the Port Call Statistics, however if this information is missing the weight can be estimated in some cases (based on information provided by the Port Authority or based on the average weight of the other ships of the same type). In other cases (for passenger ships), the
weight transported is not known but the number of passengers is provided. In this case, the emission factor (in kgCO₂e/pass.km) is taken from the Base Carbone (ADEME), updated in 2016:

<table>
<thead>
<tr>
<th>Type of vessel</th>
<th>Emission factor (in kgCO₂e/pass.km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferries / Cruise ships</td>
<td>0.468</td>
</tr>
</tbody>
</table>

iii. Transit maritime cruise

The Ships databases in 2016 are provided by the Coastguard Agencies (where existing). They contain, when available, the type of ship, the weight transported by each ship and the previous port of call and the next port of call. When all the information is available, the following equation is used to estimate the emissions:

\[
E_{\text{emissions of one ship (tCO2e)}} = d \times w \times EF
\]

With:
- \(d\) = distance travelled by the ship. This distance is disaggregated between the distance within the strait’s boundary and outside the strait’s boundary.
- \(w\) = weight transported by the ship.
- \(EF\) = emission factor

Distance

The distance is estimated based on the country of origin/destination following “the CERDI-seadistance database” (by Bertoli S., Goujon M. and Santoni O. in 2016).

The distance within the strait’s boundary is determined with Google Earth, based on the limits of the strait (as defined in the previous chapters), including the main ports identified:

<table>
<thead>
<tr>
<th>Strait</th>
<th>Distance of the strait (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dover / Pas de Calais</td>
<td>100</td>
</tr>
<tr>
<td>Gulf of Finland</td>
<td>164</td>
</tr>
<tr>
<td>Fehmarnbelt</td>
<td>30</td>
</tr>
<tr>
<td>Corsica Channel</td>
<td>55</td>
</tr>
<tr>
<td>Strait of Otranto</td>
<td>130</td>
</tr>
<tr>
<td>Strait of Corfu</td>
<td>102</td>
</tr>
</tbody>
</table>

The distance outside the strait’s boundary is determined by subtracting the distance within the strait’s boundary to the total distance between the two ports.
Emissions factors

The following emission factors are used (from DEFRA/DECC, updated in 2016):

Table 47 - Emission factors per type of ship (Source: DEFRA/DECC, 2016)

<table>
<thead>
<tr>
<th>Type of vessel</th>
<th>Emission factor (in kgCO₂e/t.km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk carriers</td>
<td>0.0042</td>
</tr>
<tr>
<td>Container</td>
<td>0.0190</td>
</tr>
<tr>
<td>Gas carriers</td>
<td>0.0136</td>
</tr>
<tr>
<td>General dry cargo</td>
<td>0.0156</td>
</tr>
<tr>
<td>Passengers ships</td>
<td>0.4581</td>
</tr>
<tr>
<td>Roro</td>
<td>0.0607</td>
</tr>
<tr>
<td>Tankers</td>
<td>0.0106</td>
</tr>
<tr>
<td>Other (average emission factor)</td>
<td>0.0123</td>
</tr>
</tbody>
</table>

When no information is available on the weight transported, an emission factor in kgCO₂e/veh.km can be used (from the Base Carbone, ADEME, updated in 2016):

Table 48 - Emission factors per type of ship (Source: ADEME, 2016)

<table>
<thead>
<tr>
<th>Type of vessel</th>
<th>Emission factor (in kgCO₂e/veh.km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tankers</td>
<td>264</td>
</tr>
<tr>
<td>General cargo</td>
<td>145</td>
</tr>
<tr>
<td>Passenger ship</td>
<td>495</td>
</tr>
<tr>
<td>Other (average)</td>
<td>250</td>
</tr>
</tbody>
</table>

c) Induced economical activities

i. Industry

To calculate the GHG emissions due to industry in each strait, the following methodology is used.

Only the industries participating to the EU emissions trading systems are considered. These industries are identified by cities of the straits on the EU emission trading system website. All the industries with an address in a city of the straits are taken into account.

For each industry identified, the “verified emissions” stated on the EU emission market for 2016, in tons of CO₂ are used. This data is available on the EU emission trading system website. If no emission is stated for 2016 for an industry, emissions for the most recent year are considered.

The emissions of all the industries identified are then summed by strait.

77 http://ec.europa.eu/environment/ets/napMgt.do;EUROPA_JSESSIONID=g-XI_tEdLcXzpAnMq_2ayWUZqc7WTsxueOiGYcOICF6iNAaes111777535239?languageCode=en
ii. Cities

To estimate the annual GHG emissions due to the residential and economical activities in the cities of the strait, the following methodology is used:

\[
\text{Emissions (tCO}_2\text{e)} = \frac{\text{Emissions}_{\text{National}}}{\text{Population}_{\text{National}}} \times \text{Population}_{\text{Local}}
\]

The national emissions from residential and economical activities are taken from the national inventories submitted to the United Nations Framework Convention on Climate Change (UNFCCC)\(^78\) (1.A.4 Energy - Fuel combustion - Other sectors, including commercial/institutional, residential and agriculture/forestry/fishing). Most of the European countries are included in the Annex I Parties and need to report their emissions every year. The latest reporting year is 2014. For the countries (such as Albania) that are not part of the Annex I Parties, the inventory need to be submitted every four years. The latest submission was taken into account (2009 for Albania). However, it is considered that it is still representative for the year of reporting (2016).

The emissions (in tCO\(_2\)e) are then divided by the population of the country, in the reporting year when available (if the population in the reporting year is not available, the closest available year is taken into account). The population number are taken from the national statistics institute of each country:

- France: INSEE\(^79\) (2014)
- UK: Office for National Statistics\(^80\) (2014)
- Finland: Statistics Finland – Tilastokeskus\(^82\) (2016)
- Denmark: Statistics Denmark / Statbank Denmark – Danmarks Statistik / Statistikbanken\(^83\) (2014)
- Germany: Statistische Ämter des bundes und der länder\(^84\) (2014)
- Italy: Istat – Instituto nazionale di Statistica\(^85\) (2014)
- Albania: Instat – Instituti i Statistikave\(^86\) (2009)
- Greece: Hellenic Statistical Authority\(^87\) (2011)

Finally, the regions considered for the residential and commercial activities are the NUTS 3 regions which shore correspond to the strait. The information on the population in the NUTS 3 regions is given in Eurostat\(^88\), last updated in 2015.

\(^{78}\) http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/9492.php
\(^{79}\) https://www.insee.fr/fr/accueil
\(^{80}\) https://www.ons.gov.uk/
\(^{81}\) https://www.stat.ee/en
\(^{82}\) http://tilastokeskus.fi/index_en.html
\(^{83}\) http://www.statbank.dk/statbankSa/default.asp?w=1366
\(^{84}\) http://www.statistik-portal.de/Statistik-Portal/
\(^{85}\) http://www.istat.it/en/
\(^{88}\) http://ec.europa.eu/eurostat/cache/RCI/#/vis=nuts3.population&lang=en
Exceptions:

- For Dover / Pas de Calais Strait, the NUTS3 areas Pas-de-Calais and Nord include the Lille Metropolis and the Mining Basin, which are not linked to the strait’s activities. It was then decided to include only the population of the “Pôle Métropolitain Côte d’Opale”

- For the Gulf of Finland’s Strait, the Helsinki-Uusimaa Region is much larger than the area of the Port of Helsinki, it was then decided to consider only the capital region (i.e. Helsinki, Espoo, Vantaa and Kauniainen).

- For Albania, as it is not part of EU, there are no NUTS 3 regions. Then, it was decided to take into account only the main cities on the shore (Vlora and Durres for the strait of Otranto and Saranda, Konispol, Himarë and Delvinë for the strait of Corfu).

iii. Tourism

To estimate the GHG emissions due to the tourism activities in the cities of the strait, the following methodology is used:

\[Emissions (tCO2e) = N \times EF (tCO2e/night) \]

with:

- \(N \) = Number of tourist nights in the areas
- \(EF \) = emission factor for a hotel night (in tCO2e/night)

The number of tourist nights in the areas is provided by the stakeholders.

The emission factor is estimated based on an average energy consumption for one hotel night, multiplied by the country’s emission factors for energy consumption (for example: Base Carbone, 2016 for France and DEFRA, 2016 for the UK). The average energy consumption is taken from a study by ADEME, EU Ecolabel and AFNOR, which give the following data for a two stars hotel: an electricity consumption of 74.8 kWh/night and a water consumption of 335 l/night (last update in 2012).

d) Inland transport

i. Passengers transport

This paragraph presents the methodology used to quantify the annual GHG emissions due to the transport of the passengers that land and board in the ports of the studied straits in 2016. Two different transport modes are considered: rail and road.

For these two modes, the data needed for the calculation are the following:

- Number of passengers who travel by the transport mode
- Average distance achieved with this transport mode
- Emission factor to convert the distance in GHG emission

The following equation is then used to calculate the GHG emission by port:

\[Emissions (tCO2e) = N \times d (km) \times EF (tCO2e/km) \]

89 http://www.pm-cote-opale.fr/
91 http://pop-static.mashke.org/albania-cities.htm
with:
N = Number of passengers landing and boarding in the studied port
d = Average distance
EF = Emission factor (tCO₂e/pass.km)

For each mode of transport, assumptions used to obtain the necessary data are presented below.

Road

- **Number of passengers who travel by road**

 To obtain the number of passengers who land or board in the studied port and travel by road, the total number of passengers who land and board in the ports and the modal share of the port is used:

 \[N = N_p \times MS \]

 with:

 N = Number of passengers travelling by road and landing or boarding in the port (and Channel Tunnel in the case of the Dover / Pas de Calais Strait)
 Np = Number of passengers landing or boarding in the port (in total)
 MS = Modal share for road (in %)

 The number of passengers who land or board in the ports in total is given by the port’s authorities, as well as the modal share, if available.

 If no information is available on the real modal share in the studied ports, the average national modal shares for 2015 are used. They are obtained on the Eurostat website for all the European countries.

- **Average distance**

 The average distance is considered equal to the distance between the port and the capital of the port’s country. The average distance is then different for all the cities, even in the same strait. This distance is estimated thanks to Google Maps and the shortest itinerary is chosen.

 Exception: the islands

 For islands (ports of Bastia, Corfu and Lefkimi), the distance to the capital is not relevant. Therefore, the average distance arbitrary chosen is the distance between the port and the furthest cost of the island, divided by 2.

 This distance is disaggregated between the distance within the strait’s boundary and outside the strait’s boundary, in order to provide a complete picture of the emissions directly emitted in the strait’s boundary, and the emissions induced by the strait but emitted outside of the boundary.

 The strait’s boundaries that are considered are the ones of the port region (NUTS3) and the distance between the port and the region boundary is estimated (named “NUTS3 Distance”) (see schema below). To know the boundary of the region (NUTS3), the Eurostat website is used and GoogleMaps is then used to estimate the distance. The disaggregation is then done as presented in the schema below, depending on the comparison between the average distance and the NUTS3 distance.

93 http://ec.europa.eu/eurostat/cache/RCI/#?vis=nuts3.population&lang=en
If Average distance > NUTS3 Distance
Distance within the strait = NUTS3 Distance
Distance outside the strait = Average distance – Distance within the strait

If Average distance < NUTS3 Distance
Distance within the strait = Average distance
Distance outside the strait = 0 km

Figure 140 - Examples of estimation of the distance travelled (Source: I Care & Consult)
Emission factor

The emission factor used is “Voiture particulière – Puissance fiscale moyenne, motorisation moyenne” ("Private car, Average fiscal power, Average motorization"), from the ADEME database “Base Carbone” (updated in 2016). It is considered to be the same for all the countries.

The average load factor considered is two persons per car, considering the higher value of the European Environment Agency for travel and leisure.

As the unit of the emission factor is kgCO₂e/km, it is divided by two to take into account the load factor.

Table 49 - Example of calculations for on-road passenger transport

<table>
<thead>
<tr>
<th>Port</th>
<th>Passengers</th>
<th>Modal share</th>
<th>Average distance (km)</th>
<th>Emission factor (kgCO₂/pass.km)</th>
<th>Emissions (tCO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helsinki</td>
<td>11 974 000</td>
<td>0.95</td>
<td>2</td>
<td>0.127</td>
<td>2 878</td>
</tr>
<tr>
<td>Tallinn</td>
<td>10 173 300</td>
<td>0.98</td>
<td>2</td>
<td>0.127</td>
<td>2 522</td>
</tr>
</tbody>
</table>

Rail

- **Number of passengers who travel by train**

To obtain the number of passengers who land or board in the port and travel by train, the same equation than for road is used.

\[N = Np \times MS \]

with:

- \(N \) = Number of passengers who travel by train and landing or boarding in the port (or travelling through the Channel Tunnel in the case of the Dover / Pas de Calais Strait)
- \(Np \) = Number of passengers landing or boarding in the port (in total)
- \(MS \) = Modal share for train (in %)

The number of passengers who land or board in the ports in total are given by the port’s authorities, as well as the modal share, if available.

If no information is available on the real modal share in the studied ports, the average national modal shares for 2015 are used. They are obtained on the Eurostat website\(^96\) for all the European countries.

- **Average distance**

The distance travelled in average by the passengers is calculated by country. Thus, the distance is the same for all the ports in a same country (for example Dunkirk, Calais and Boulogne-sur-Mer in France).

To obtain it, a ratio between passengers.km completed in 2015 in the whole country and the number of passengers who travelled in the whole country is calculated. These pieces of data are available on Eurostat\(^97\) for the European countries.

Exception: the islands

For islands (ports of Bastia, Corfu and Lefkimi), the national average distance can be irrelevant. That is why, specific assumptions are used:

- For Bastia, as the national average distance seems relevant as it is almost entirely included in the NUTS 3 region, this data is then used.
- For Corfu and Lefkimi, it is considered that there are no railways on the island.

In the same way as road transport, this distance is disaggregated between the distance within the strait’s boundary and outside the strait’s boundary, in order to provide a complete picture of the emissions directly emitted in the strait’s boundary, and the emissions induced by the strait but emitted outside of the boundary. The strait’s boundaries that are considered are the ones of the port region (NUTS3) and the distance between the port and the region boundary is estimated (named “NUTS3 Distance”). The disaggregation is done depending on the comparison between the average distance and the NUTS3 distance.

If Average distance > NUTS3 Distance

Distance within the strait = NUTS3 Distance
Distance outside the strait = Average distance – Distance within the strait

If Average distance < NUTS3 Distance
Distance within the strait = Average distance
Distance outside the strait = 0 km

➢ Emission factor

Emission factors used are those from the ADEME database “Base Carbone”\(^98\) (last update in 2016). If the emission factor is available for the port’s country, this factor is used. If the emission factor is not available for the country of the port, an average factor is used, based on all the emission factors available (0.0629 kgCO\(_2\)/km.pass)\(^99\).

For France, numerous factors are available, thus the emission factor “Train Grandes Lignes” is used.

Table 50 - Example of calculations for rail passenger transport

<table>
<thead>
<tr>
<th>Example: Gulf of Finland – Passenger transport - Rail</th>
</tr>
</thead>
<tbody>
<tr>
<td>The steps for the calculation of the GHG emissions due to transport passenger by train in the Gulf of Finland are presented below:</td>
</tr>
<tr>
<td>➢ Number of passenger for each port (landing and boarding):</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pieces of data obtained through port authorities.</td>
</tr>
<tr>
<td>➢ Modal share:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pieces of data available on Eurostat.</td>
</tr>
<tr>
<td>➢ Average distance</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pieces of data available on Eurostat.</td>
</tr>
</tbody>
</table>

\(^{99}\) Average emission factor used for Albania and Estonia
ii. Freight transport

This paragraph presents the methodology used to quantify the annual GHG emissions due to freight transport (loaded and unloaded goods in the ports of the strait in 2016). Two different modes of transport are considered: rail and road.100

For these two modes, data needed for the calculation is the following:
- Tonnage of goods transported by the transport mode
- Average distance achieved with this transport mode
- Emission factor to convert the distance in GHG emissions

The following equation is then used to calculate the GHG emissions by port:

\[
\text{Emissions (tCO}_2\text{e)} = T \times d \times EF \quad \text{(tCO}_2\text{e/t.km)}
\]

with:
- \(T \) = Tonnage of goods going transporting by the transport mode
- \(d \) = average distance
- \(EF \) = Emission factor (tCO\text{e}/t.km)

For each mode of transport, assumptions used to obtain these pieces of data are presented below.

100 Except for the port for which data on waterway transport is available (case of Dunkirk)
Road

➢ Tonnage of good transported by road

To obtain the tonnage of goods passing through studied ports and transported by road, the total tonnage of goods passing through studied ports and the modal share of the port is used:

\[T = T_p \times MS \]

with:

- \(T \) = Tonnage of good passing through the port and transported by road
- \(T_p \) = Total tonnage of good passing through the port (and in the Channel Tunnel, in the case of the Dover / Pas de Calais Strait)
- \(MS \) = Modal share for road (in %)

The tonnage of good passing through the port in total is given by the port’s authorities, as well as the modal share, if available.

If no information is available on the real modal share in studied ports, the average national modal shares for 2015 are used. They are obtained on the Eurostat website101 for all the European countries.

➢ Average distance

The average distance is calculated by country.

For each European country, the breakdown of tonnage by range of distance is available on Eurostat for national and international traffic. Data for 2016 are used.

The ranges considered are:
- Range 1: <50km
- Range 2: 50-149km
- Range 3: 150-499km
- Range 4: >500km

These pieces of data are available in tonnage and are then converted in percentage.

The average distance is calculated by using the middle mileage for each range with the following equation:

\[M (km) = 25km \times \%Range1 + 100km \times \%Range2 + 325km \times \%Range3 + 600km \times \%Range4 \]

These calculated average distances are also used for islands.

As for passenger’s transport, this distance is disaggregated between the distance within the strait’s boundary and outside the strait’s boundary, in order to provide a complete picture of the emissions directly emitted in the strait’s boundary, and the emissions induced by the strait but emitted outside of the boundary. The strait’s boundaries that are considered are the ones of the port region (NUTS3) and the distance between the port and the region boundary is estimated (named “NUTS3 Distance”).

The disaggregation is done depending on the comparison between the average distance and the NUTS3 distance.

If Average distance > NUTS3 Distance
Distance within the strait = NUTS3 Distance
Distance outside the strait = Average distance – Distance within the strait

If Average distance < NUTS3 Distance
Distance within the strait = Average distance
Distance outside the strait = 0 km

➢ Emission factor

The emission factor used is “Ensemble articulé – marchandises diverses – PT40T” (“Articulated 40T, Diverse goods”), from the ADEME database “Base Carbone”\(^{102}\) (updated in 2016). It is considered to be the same for all the countries.

Table 51 - Example of calculations for on-road freight transport

<table>
<thead>
<tr>
<th>Example: Gulf of Finland – Freight transport - Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>The steps for the calculation of the GHG emissions due to freight transport by road in Gulf of Finland are presented below:</td>
</tr>
</tbody>
</table>

➢ Tonnage for each port:

<table>
<thead>
<tr>
<th>Port</th>
<th>Tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helsinki</td>
<td>11 621 000</td>
</tr>
<tr>
<td>Tallinn</td>
<td>20 118 500</td>
</tr>
</tbody>
</table>

Pieces of data obtained through port authorities.

➢ Modal share:

National data used.

<table>
<thead>
<tr>
<th>Country</th>
<th>Real modal share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>0.74</td>
</tr>
<tr>
<td>Estonia</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Pieces of data available on Eurostat.

➢ Average distance

National data used.

<table>
<thead>
<tr>
<th>Finland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Middle km</td>
</tr>
<tr>
<td>thousands tonnes</td>
</tr>
<tr>
<td>%</td>
</tr>
</tbody>
</table>

Average distance (km) = \(25 \times 53.6\% + 100 \times 24.5\% + 325 \times 18.1\% + 600 \times 3.9\% = 119.8 \text{ km}\)

\(^{102}\) http://www.bilans-ges.ademe.fr/fr/basecarbone/donnees-consulter/liste-element/categorie/104
To obtain the tonnage of goods passing through the ports and transported by rail, the same equation than for road is used.

\[T = T_p \times MS \]

with:
- \(T \) = Tonnage of goods passing through the port and transporting by train
- \(T_p \) = Total tonnage of goods passing through the port (and the Channel Tunnel in the case of the Dover / Pas de Calais Strait)
- \(MS \) = Modal share for train (in %)

The tonnage of goods passing through the port in total is given by the port’s authorities, as well as the modal share, if available.

If no information is available on the real modal share in the ports, the average national modal shares for 2015 are used. They are obtained on the Eurostat website103 for all the European countries.

Average distance

The average distance is calculated by country.

To obtain it, a ratio between the tonnes.km completed in 2015 in the whole country and the tonnage transported in the whole country is calculated. These pieces of data are available on Eurostat104 for the European countries.

Exception: the islands

For the islands (ports of Bastia, Corfu and Lefkimi), the national average distance is not relevant. Therefore, the national average for road freight transport is used.

This distance is disaggregated between the distance within the strait’s boundary and outside the strait’s boundary, in order to provide a complete picture of the emissions directly emitted in the strait’s boundary, and the emissions induced by the strait but emitted outside of the boundary. The strait’s boundaries that are considered are the ones of the port region (NUTS3) and the distance between the port and the region boundary is estimated (named “NUTS3 Distance”). The disaggregation is done depending on the comparison between the average distance and the NUTS3 distance.

If Average distance > NUTS3 Distance

Distance within the strait = NUTS3 Distance
Distance outside the strait = Average distance – Distance within the strait

If Average distance < NUTS3 Distance

Distance within the strait = Average distance
Distance outside the strait = 0 km

Emission factor

Emission factors used are those from the ADEME database “Base Carbone”105 (updated in 2016).

If the emission factor is available for the country of the port, this factor is used.

If the emission factor is not available for the country of the port the average factor for Europe (available on the data base) is used106.

For France, numerous factors are available, the emission factor “Train de marchandises - motorisation mixte électricité / gazole - marchandises denses” (“Freight train – mixed power – dense goods”) is used.

\begin{itemize}
 \item 104http://appso.eurostat.ec.europa.eu/nui/show.do?dataset=rail_go_grpgood&lang=fr
 \item 105http://www.bilans-ges.ademe.fr/fr/basecarbone/donnees-consulter/liste-element/categorie/127
 \item 106Average emission factor used for Albania and Estonia
\end{itemize}
Example: Gulf of Finland – Freight transport - Rail

The steps for the calculation of the GHG emissions due to freight passenger by rail in Gulf of Finland are presented below:

- **Tonnage for each port (landing and boarding):**

<table>
<thead>
<tr>
<th>Port</th>
<th>Tonnage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helsinki</td>
<td>11 621 000</td>
</tr>
<tr>
<td>Tallinn</td>
<td>20 118 500</td>
</tr>
</tbody>
</table>

Pieces of data obtained through port authorities.

- **Modal share:**

<table>
<thead>
<tr>
<th>Country</th>
<th>Modal share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>0.26</td>
</tr>
<tr>
<td>Estonia</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Pieces of data available on Eurostat.

- **Average distance**

<table>
<thead>
<tr>
<th>Country</th>
<th>Thousand tonnes</th>
<th>Thousand tonnes.km</th>
<th>Average distance (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>33 392</td>
<td>8 468 000</td>
<td>253.6</td>
</tr>
<tr>
<td>Estonia</td>
<td>286 000</td>
<td>3 117 000</td>
<td>111.2</td>
</tr>
</tbody>
</table>

Pieces of data available on Eurostat.

- **Emission factor**

<table>
<thead>
<tr>
<th>Country</th>
<th>Emission factor (kgCO₂/t.km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>0.0201</td>
</tr>
<tr>
<td>Estonia</td>
<td>0.0226</td>
</tr>
</tbody>
</table>

National emission factor available for Finland on the ADEME’s database. Average European emission factor used for Estonia.

- **Results**

\[
\text{Tonnage transported (t) \times Modal share \times Average distance (km) \times Emission factor (kgCO₂/t.km)} \times \frac{1000}{1000} = \text{Emissions (tCO₂)}
\]

<table>
<thead>
<tr>
<th>Port</th>
<th>Tonnage</th>
<th>Modal share</th>
<th>Average distance (km)</th>
<th>Emission factor (kgCO₂/t.km)</th>
<th>Emissions (tCO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helsinki</td>
<td>11 621 000</td>
<td>0.26</td>
<td>253.6</td>
<td>0.0201</td>
<td>15 401</td>
</tr>
<tr>
<td>Tallinn</td>
<td>20 118 500</td>
<td>0.33</td>
<td>111.2</td>
<td>0.0226</td>
<td>16 685</td>
</tr>
</tbody>
</table>
Exception: Waterways transport

In cases where national modal share’s data is available for other transport modes, such as waterway transport, it is considered to be non-material, because the modal share is negligible (mostly inferior to 1%). As such, only the modal shares of road and rail transport are taken into account to breakdown tonnages data.

However, if the real modal share of the ports is known and if the share of waterways transport mode is important, this transport mode is considered107. The methodology used is exactly the same than for rail mode (same pieces of data are available on Eurostat for waterways).

Exception: Airports

It was considered that airports are not influenced by the presence of the strait. As such, the airports are not taken into account in the in-land transport or in the induced economical activities.

107 Case of Dunkirk port