

Interreg Europe

Proyecto ENERSELVES Autoconsumo energético en edificios

Fernando Collado Bermudo

Técnico de Agenex

fcollado@agenex.net

23 Febrero 2017 | Jornada de Autoconsumo en edificios | Badajoz

¿Que es?

Entidad pública creada en 2001 a través del Programa Europeo de Energía Inteligente

2001

2015

Desarrollo de actividades en 2 temáticas :

PROMOCIÓN DE INVERSIONES EN TECNOLOGÍAS VERDES

PLANIFICACIÓN ESTRATÉGICA EN ENERGÍA

Principales patronos

JUNTA DE EXTREMADURA

DIPUTACIÓN DE BADAJOZ

DIPUTACIÓN DE CÁCERES

¿Qué es el autoconsumo?

Producción de energía para el consumo propio del edificio

Tipos principales

- Instalaciones solares térmicas
- Instalaciones fotovoltaicas (aisladas o conectadas a la red eléctrica)
- Instalaciones minieólicas

Regulación autoconsumo eléctrico

- Real Decreto 900/2015:
 - Define un marco regulatorio
 - Elimina algunos cargos y facilita la tramitación a las instalaciones de menos de 10 kW

Convocatoria

Programa Interreg Europa Aprobado en Octubre de 2016

Presupuesto

1.598.431€ (aportación FEDER: 85%)

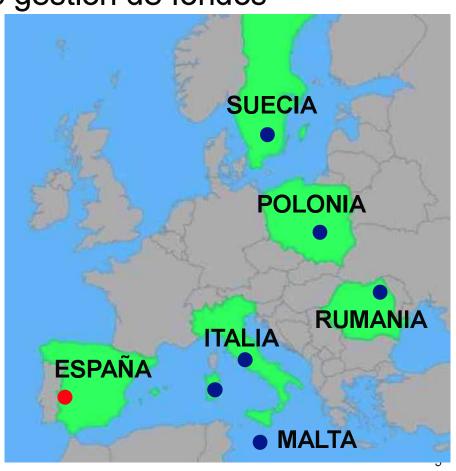
Duración

Fase 1: Enero 2017 – Diciembre 2018

Fase 2: Enero 2019 – Diciembre 2020

Objetivo

Impulsar políticas que fomenten la integración de energías renovables para el autoconsumo en edificios


Consorcio

7 socios

- 4 Autoridades regionales de gestión de fondos
- 3 Agencias de energía

Diferentes perfiles:

- Socios con experiencia
- Solo ejemplos puntuales
- Sin experiencia

Justificación

- El incremento de inversiones en Eficiencia Energética y Energías Renovables para edificios son uno de los mayores retos de Europa para 2030.
- La **Directiva Europea 2010/31/UE** sobre eficiencia energética en edificios establece que los estados miembros asegurarán que:
 - a partir del 2018, todos los edificios públicos nuevos sean edificios de consumo de energía casi nulo
 - a partir del **2020**, **todos los edificios nuevos** sean edificios de consumo de energía casi nulo
- El proyecto ENERSELVES pretende identificar las tecnologías más eficientes de cada región y ayudar a que los Fondos Estructurales de Europa tengan un mayor impacto (creación de empleo, riqueza e inversiones) en las regiones.

Cronograma FASE 1

Enero 2017 Diciembre 2018 Semestre Semestre Semestre Semestre 3 Análisis de las tecnologías 7 Planes de actuación para más eficientes en cada región políticas fomentar de autoconsumo

Cada semestre:

- Jornadas y Conferencias sobre autoconsumo
- •Reuniones con los agentes y responsables políticos
- •Difusión del proyecto mediante noticias y pagina web

Cronograma

FASE 2: Ejecución de Planes de Actuación

Enero 2019 Diciembre 2020 Semestre Semestre Semestre Semestre 6 Aplicación de medidas para Seguimiento de las Valoración de impulsar políticas medidas de resultados autoconsumo obtenidos

Resultados esperados

- > Aumentar el impacto económico y social de los Fondos Estructurales de Europa, mediante aplicación en las tecnologías más rentables
- Intercambiar de buenas prácticas
- Formar a los agentes y responsables políticos para impulsar el autoconsumo

Aumentar la información de los ciudadanos en esta temática

ENERSELVES

Interreg Europe

Muchas gracias

Fernando Collado Bermudo fcollado@agenex.net

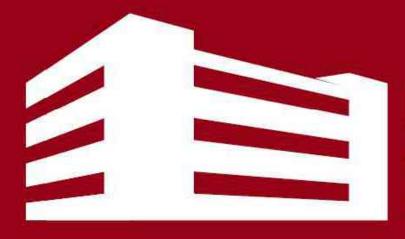
http://www.interregeurope.eu/enerselves/

Instalaciones de autoconsumo energético en edificios

Francisco J. Márquez

Agencia Extremeña de la Energía

23 febrero 2017 | Jornada: « Integración de EERR en edificios »


Edificio Rojo

- Instalación de geotermia
- Instalación de solar fotovoltaica

Instalaciones de solar fotovoltaica para autoconsumo Instalación de energía solar térmica

EDIFICIO ROJO Centro Hispano-Luso de Energética Edificatoria

- Consejería de Medio Ambiente y Rural
- Servicio territorial de Medio Ambiente de Badajoz

Fondo Europeo de Desarrollo Regiona

JUNTA DE EXTREMADURA

Consejeria de Medio Ambiente y Rural Políticas Agrarias y Territorio. JUNTA DE EXTREMADURA

Consejeria de Economía e Infraestructuras

Edificio Rojo

Aspectos novedosos:

- Una de las primeras instalaciones de geotermia en un edificio público de Extremadura y Alentejo.
- Una de las primeras instalaciones en la modalidad de autoconsumo fotovoltaico de Extremadura.
- Edificio e instalaciones completamente monitorizadas desde cualquier lugar.
- Carácter transfronterizo y emplazamiento estratégico.
- Contenidos didácticos e interactivos, diseñados para el uso de dispositivos móviles.
- Diseñado especialmente para estudiantes de ESO, F.P. y Universidad.
- Web diseñada para la participación de la comunidad educativa.

Participación ciudadana:

El primer espacio de participación, la Web oficial: www.edificiorojo.com.

Los contenidos se plantean con un enfoque didáctico e interactivo.

El proyecto tiene un carácter público y totalmente gratuito para los usuarios.

Replicabilidad:

El proyecto es fácilmente replicable desde dos enfoques complementarios:

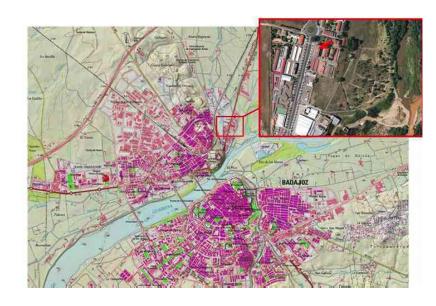
- Aprovechar el extenso parque edificatorio de titularidad pública como espacio demostrativo de tecnologías eficientes y limpias, que impulsen desde el ejemplo nuevos modelos de gestión energética.
- Dar a conocer los beneficios medioambientales y socioeconómicos de dichas instalaciones a la ciudadanía.

www.edificiorojo.com

Edificio Servicio Territorial del Medio Natural de Badajoz

INSTALACIÓN DE GEOTERMIA

Geotermia: Principio de funcionamiento


Datos generales del edificio

Denominación	Servicio Territorial del Medio Natural de Badajoz		
Uso	Administrativo.		
Horario	8.00 a 15.00 (lunes a Viernes). Limpieza 7.30 a 21.00.		
Función	Albergar las dependencias del Servicio Territorial del Medio Natural de Badajoz, aunque en su interior también acoge algunos despachos pertenecientes al Servicio Territorial de Agricultura,		
Ubicación			
Calle o plaza:	Ctra, De San Vicente		
N°:	3		
Código Postal:	06071		
Localidad:			
Provincia:	: Badajoz		
Localización:	38° 53′ 40,30" N 6° 58′ 11,56" W		

Año de construcción	1998			
Descripción	Constituido por un único cuerpo dividido en tres plantas y sótano. La fachada principal del centro se encuentra orientada hacia el Noroeste. La estructura portante del edificio es de hormigón armado.			
Reformas importantes	No			
Superficie útil	2.523,25 m ²			
Pl1	608,00			
PI. O	636,25			
Pl. 1	648,50			
Pl. 2	630,50			
Zonificación	Superf. útil (m2)			
TOTAL	2.523,25 m ²			

PLANTA	ZONA	TIPO DE EQUIPO	UNIDAD	RANGO TEMPERATUR AS °C	UNIDAD	Potencia nominal (W)
0	Sala climatizadora	Climatizadora	Fancolls	20-24	Bomba	1,500
Ť	Sala c <mark>li</mark> matizadora	Climatizadora	Fancolls	20-24	Bomba	1.500
2	Sala c <mark>l</mark> imatizadora	Climatizadora	Fancoils	20-24	Bomba	1.500
Cubierta	Cubierta	Bomba (aire/agua)				60,600

Edificio Servicio Territorial del Medio Natural de Badajoz

Test de Respuesta Térmica

Propiedades del suelo

Conductividad térmica del subsuelo: 1,77 W/m·K

Conductividad del fluido de sellado en pozos: 1,3

W/m·K

Temperatura del terreno sin inerencia: 19,8 °C

Conductividad térmica fluido caloportador:

0,480 W/m·K

Punto de congelación:

10.0 °C

Capacidad calórica específica:

3.795 J/kg·K

Resistencia térmica efectiva en el sondeo:

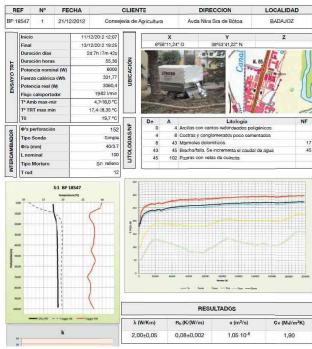
0,1249 K/(W/m)

Límite de temperatura evaporación: -5 °C

Límite de temperatura condensación: 40 °C

Potencia calefacción:

49 kW


SPF calefacción: 4

Potencia refrigeración: 38 kW

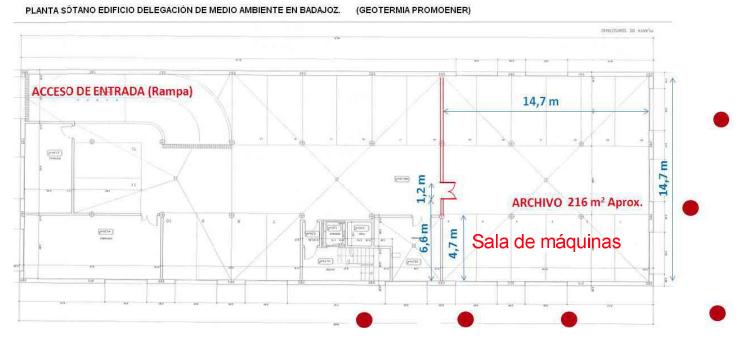
SPF refrigeración: 3,5

Demanda calefacción:

Instalación proyectada

Demanda calor: 60,4 MWh/año

6 sondeos x 100m

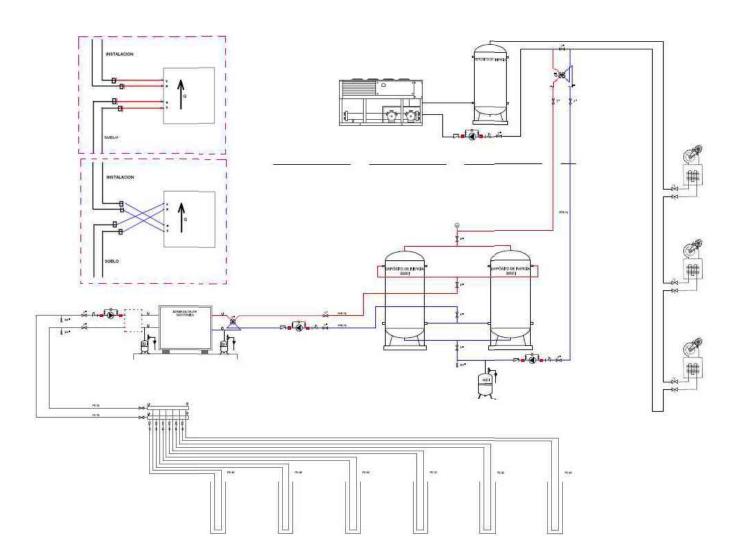

Demanda frio: 23,4 MWh/año

BCG: 100kW

Acumulador: 3000L

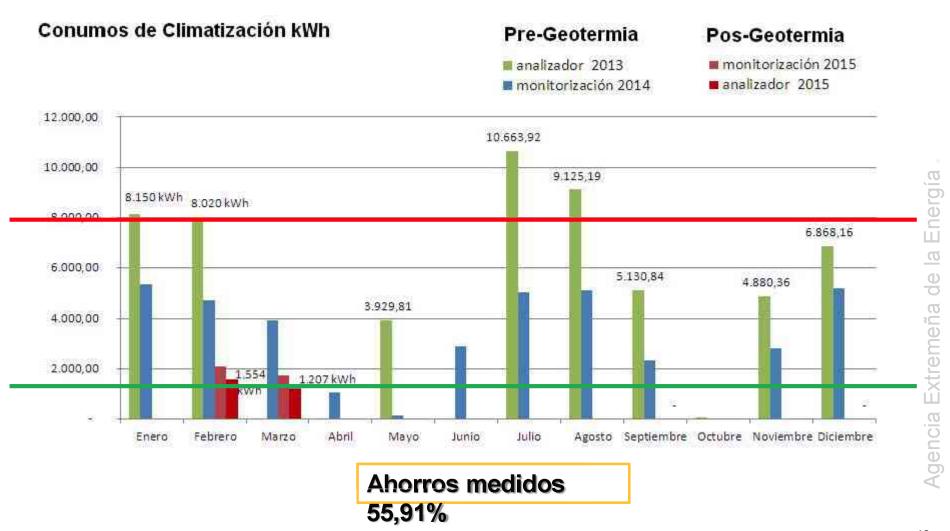
Presupuesto de Licitación : 66.652,89

13


<u></u>

Instalación proyectada

Ejecución



Resultados

Monitorización

ENERGÍA

Análisis de redes del cuadro de la sala geotérmica *.

Energía consumida por la BCG

Energía consumida por los elementos auxiliares

Energía aportada por la BCG

Rendimiento BCG

TEMPERATURA

Temperatura de impulsión de la B.C.G.

Temperatura de retorno de la B.C.G.

Temperatura de ida a pozos

Temperatura de retorno de pozos

Temperatura de acumulación

Temperatura exterior.

Temperatura representativa del interior de

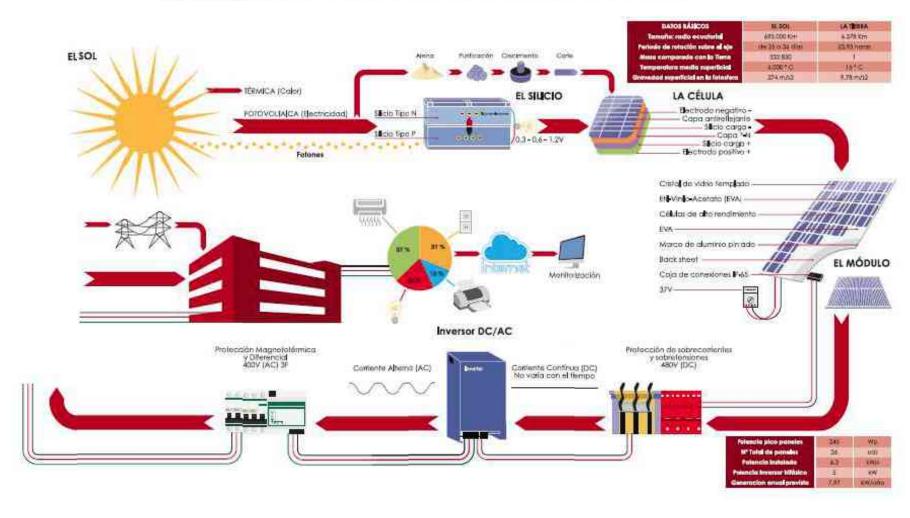
ALARMAS

Fuera de servicio
Parada inesperada del sistema
Temperatura max/min de los pozos
Temperatura max/min interior del edificio.

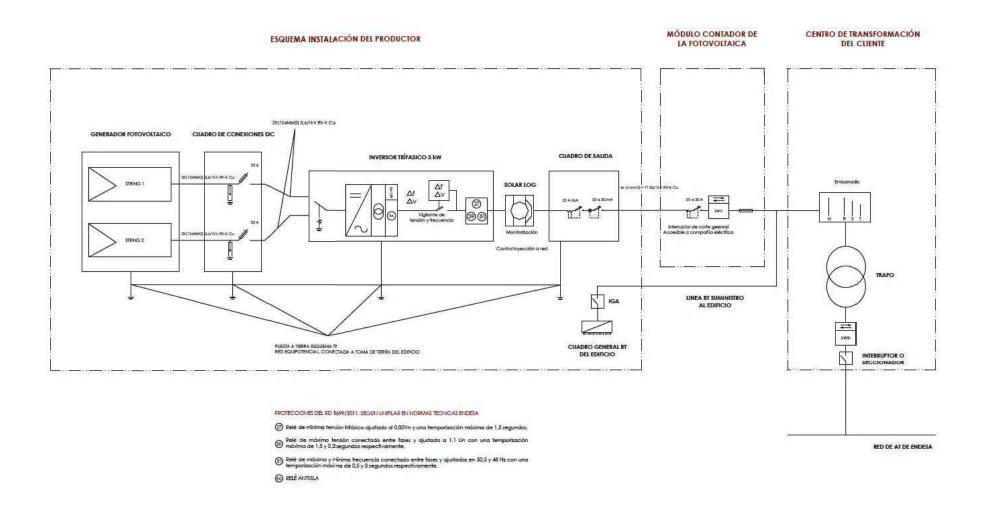
Difusión

Edificio Servicio Territorial del Medio Natural de Badajoz

INSTALACIÓN DE SOLAR FOTOVOLTAICA

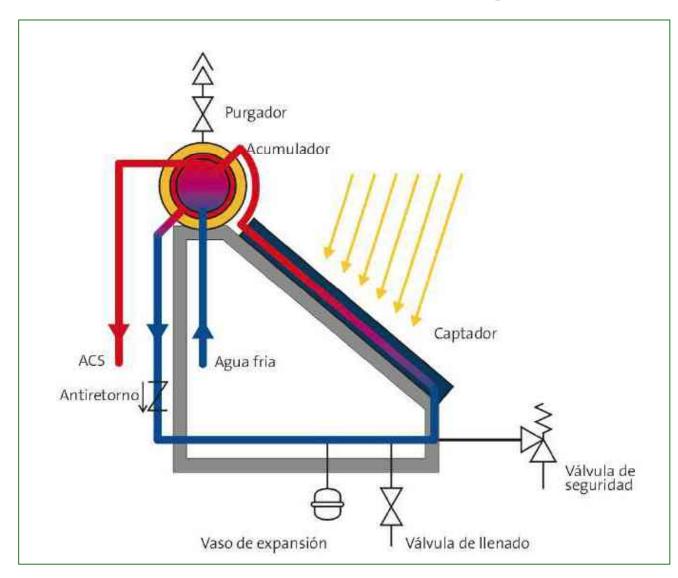


ELECTRICIDAD CON EL SOL: EFECTO FOTOVOLTAICO



DATOS GENERALES

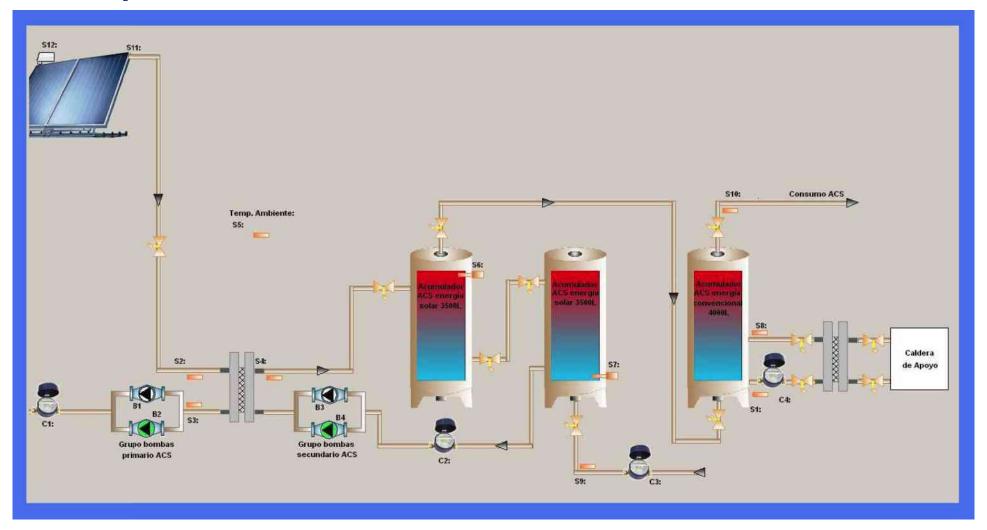
Potencia pico paneles	245 Wp			
Paneles en serie en ramales	13			
Nº Ramales	2			
Nº total de paneles	26			
Potencia Instalada	6,37 kWp			
Potencia inversor trifásico	5 kW			
Generación anual prevista	7,97 kWh/kWp/año			


Residencia Universitaria Hernán Cortés

INSTALACIÓN DE SOLAR TÉRMICA PARA A.C.S.

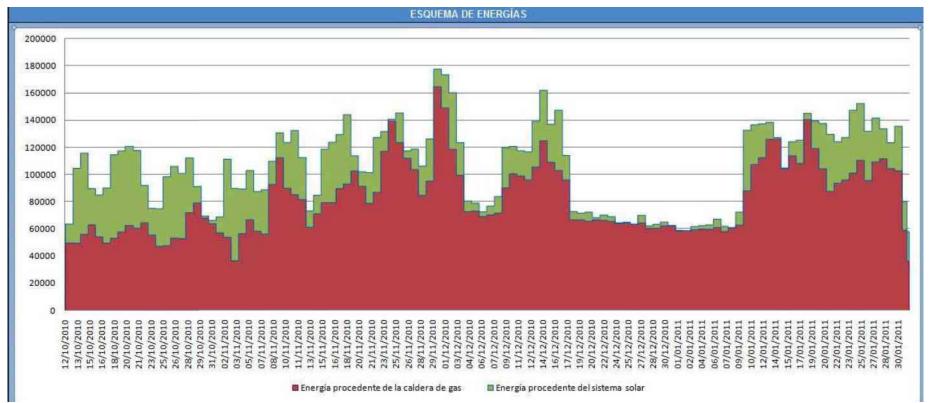
Solar Térmica: Principio

R.U. Hernán Cortés



R.U. Hernán Cortés

Esquema de funcionamiento:



R.U. Hernán Cortés

Algunos datos:

- 150 plazas
- 8250 l/día de ACS a la temperatura de consumo
- 54% de cobertura de las necesidades de ACS
- 124,32 m² de captadores

R.U. Hernán Cortés

Interreg Europe

Toda la información en:

http://www.interregeurope.eu/enerselves/

Agencia Extremeña de la Energía

Interreg Europe

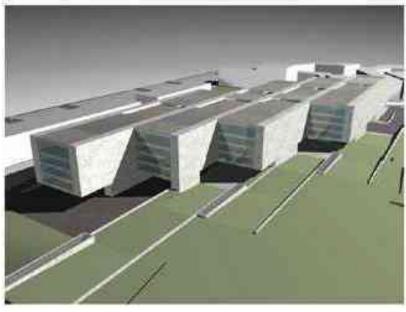
Gracias por su atención!

Questions welcome

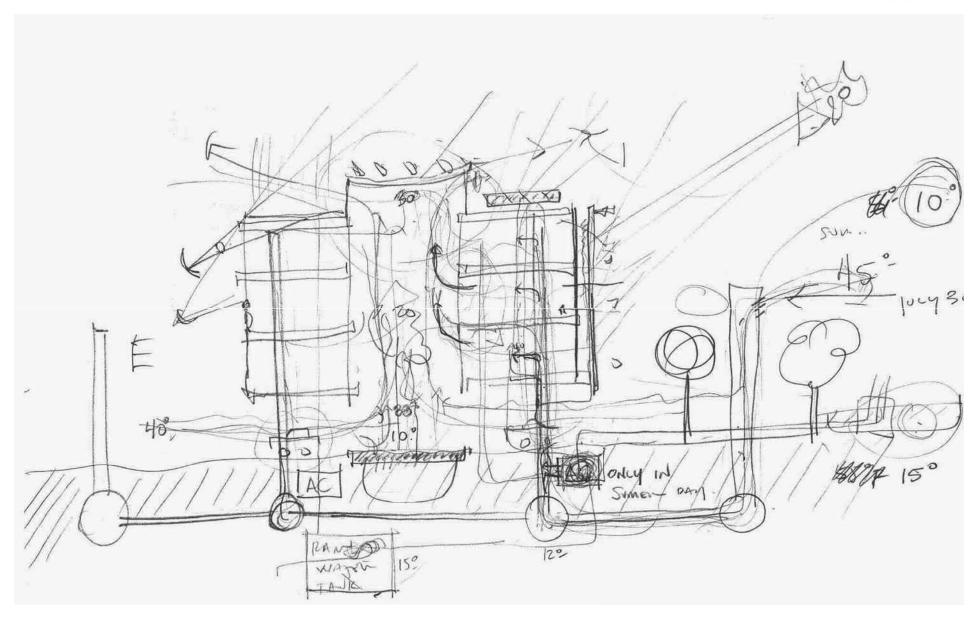
EDIFICIO III MILENIO. MÉRIDA Instalaciones de energías renovables

Esther Gamero Ceballos-Zúñiga

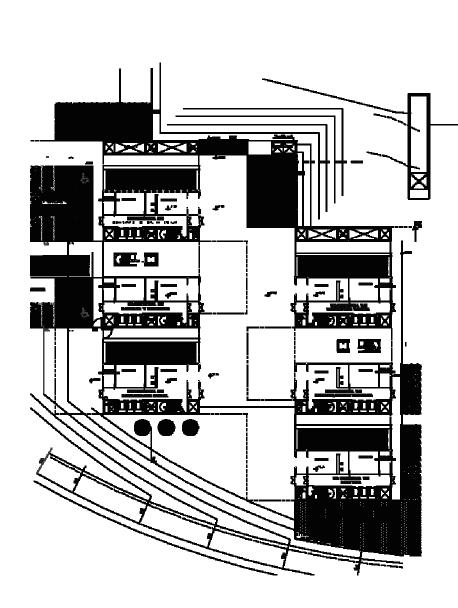
Jefe de Servcio de Arquitectura, Calidad y Accesibilidad Dirección General de Arquitectura

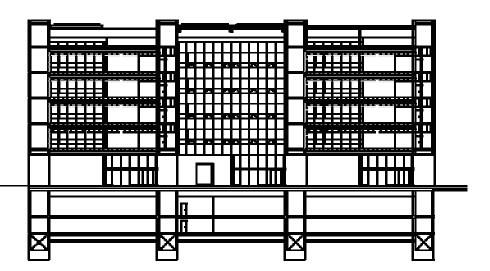


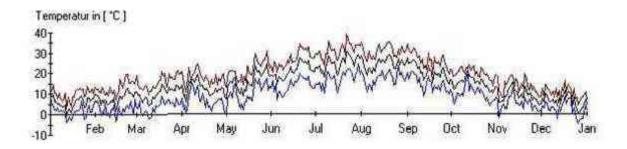
SOSTENIBILIDAD CULTURAL



Zona 4. Terrazas, frutales **ORDENACIÓN GENERAL** Zonas aterrazadas çara cultivo frutales Almendro, cerezo, peral, granado... Parra, glicinio, hiedra, zarzaparrilla... Zona 1. Mirador y cumbre Bosque caducifolio y montaña Castaño, quejigo, roblet, rebollo... Enebro, jarón, carpaza, escoba... Zona 1. Dehesa y monte mediterráneo Zona 3. Vegetación de Ribera Zonas de conservación del terreno natural Encina, alcornoque, madroño, lentisco... Zona inferior de acumulación de agua. Jera, torvisco, labiernago, retama, romero... Almez, majuelo, higuera... Adelfa, escaramujo, atarfe, durillo... Plaza pública frente a Consejerías Zonas pavimentadas, kiosko de prensa, zona juego niños....



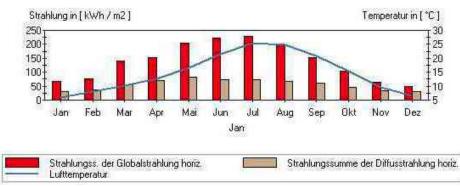




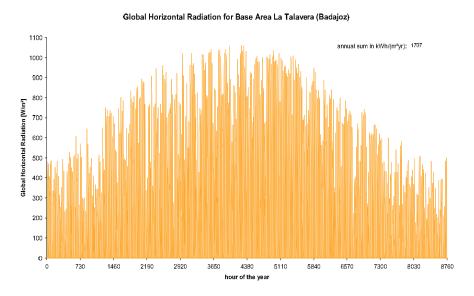
SOSTENIBILIDAD AMBIENTAL

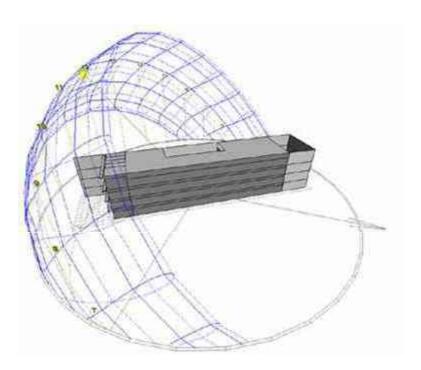
Tiene que ver con los aspectos físicos del emplazamiento, teniendo entre sus principios la recuperación de todos los materiales que surgen directamente de la naturaleza.

DATOS DE PARTIDA


Temperaturas mínima, media y máxima a lo largo de un año (medias de 10 años) METEOTEST 2003.

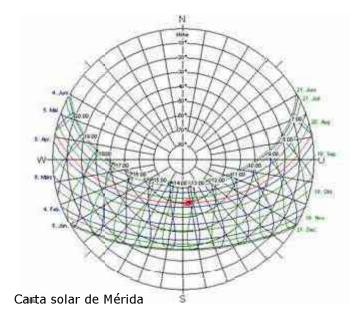
Temperatura ambiente



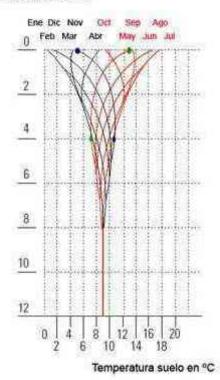

Radiación solar global

Radiación solar global, valores mensuales METEOTEST 2003

Radiación solar global, valores mensuales METEOTEST 2003

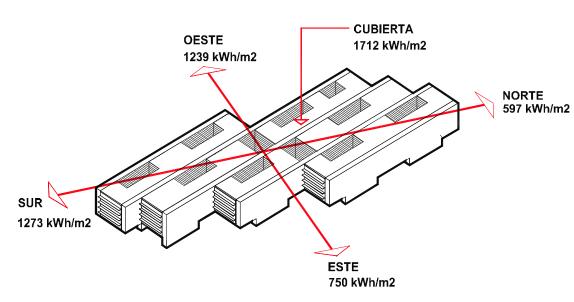


Trayectoria solar



Carta solar

Profundidad en m.


Temperatura del terreno

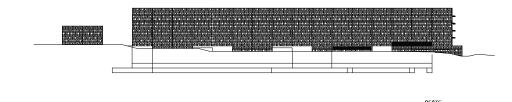
INTENSIDAD DE ENERGIA SOLAR SOBRE EL EDIFICIO

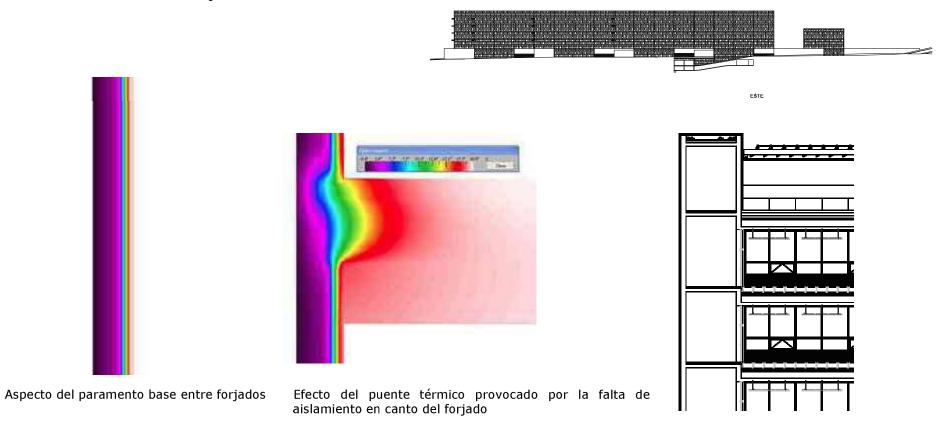
INSOLACIÓN SOLAR

Insolación solar de Mérida /METEOTEST 2003/, Albedo para los cálculos 0.2

	Azimut ^A	Elevación	Suma anual en kWh/m²
Norte(oeste)	145°	90°	597
Este	-125°	90°	750
Sur(este)	-35°	90°	1273
Oeste	55°	90°	1239
Cubierta	0	0°	1712

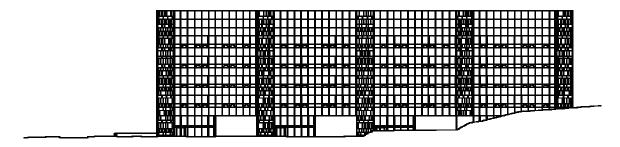
Albedo = 0.2

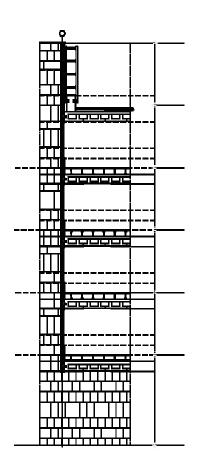

A En Meteonorm 0°=Sur, 180°=Norte, -90 = Este, +90=Oeste

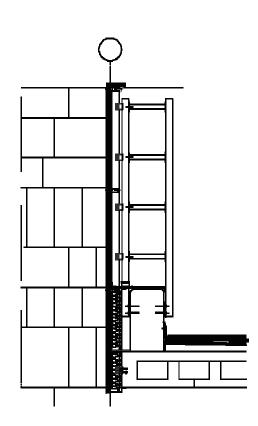


ANALISIS DE LA ENVOLVENTE

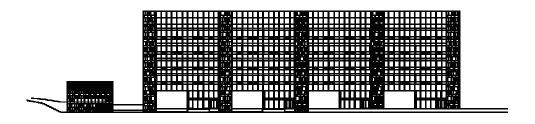
Cubierta

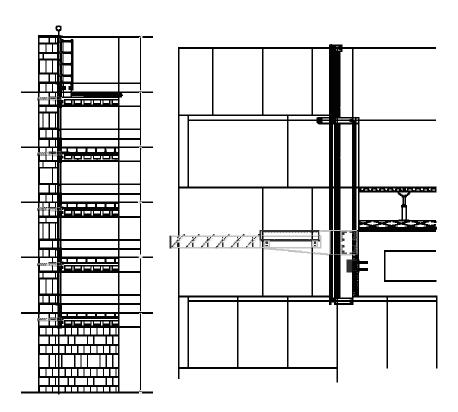

Fachada Este y Oeste



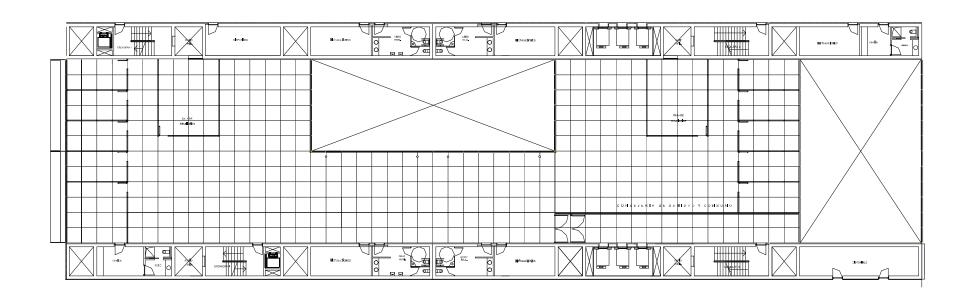


Fachada Norte

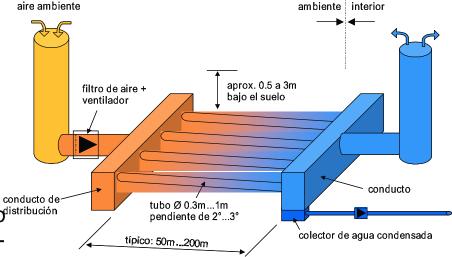


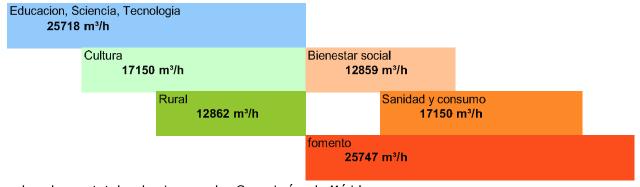

ENERSELVES Interreg Europe

Fachada Sur



El orden posibilita la libertad de formas, porque tras el orden viene la creatividad




SOSTENIBILIDAD TÉCNICA

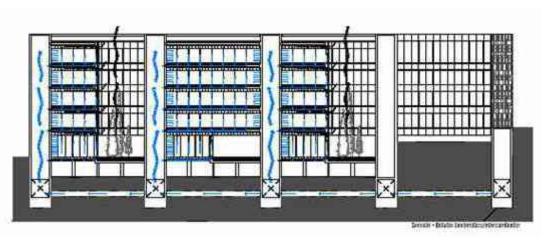
Aprovecha los avances que ha desarrollado la ciencia en energías renovables en los últimos años.

INTERCAMBIADOR DE CALOR AIRE TIERRA

Como estrategia destaca un intercambiador tierra-aire geotérmico como elemento bioclimático más significativo y determinante en la concepción de este conjunto de edificios. Se basa en el aprovechamiento del calor solar acumulado en el terreno de modo que se consigue prerefrigerar o pre-calentar el aire de entrada a las instalaciones de climatización.

Flujos de volumen totales de aire para las Consejerías de Mérida

Algunos datos adicionales



Datos climáticos del edificio		
Flujo de aire de diseño (para cada intercambiador)	15′000	m³/h
Temperatura de diseño interior	1824	°C
bypass instalado?	si	

Datos del suelo - granito (cf)

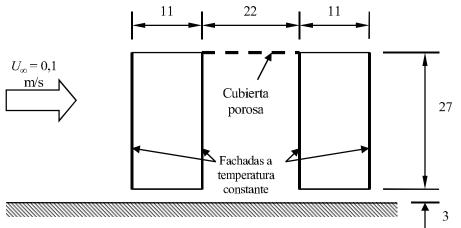
densidad	2800	kg/m3
Capacidad térmica	0.75	kJ/(kgK)
Conductividad térmica	2.5	W/(mK)

Diseño

En el proyecto se ha tomado como valor de diseño de 3 m/s para los conductos paralelos del intercambiador de calor, lo que conlleva una sección transversal mínima de 1.4 m².

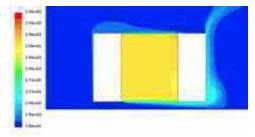
Se han utilizado, por cada intercambiador, 25 tubos de 18 m de largo y 315 mm de diámetro cada uno de polietileno de alta densidad PE100 sobre cama de arena, instalados a 1.0 m bajo el nivel del último sótano del aparcamiento del edificio, con una profundidad media de 8 m. sobre la cota de planta baja

Resultados teóricos del intercambiador

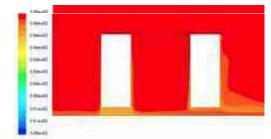

Ahorros en demanda por el empleo de los diversos sistemas de introducción de aire fresco y ventilación.

TIPO DE VENTILACIÓN	DEMANDA DE CALEFACCIÓN (kWh)	DEMANDA DE REFRIGERACIÓN (kWh)	DEMANDA TOTAL (kWh)
(1) VENT EXT DIA	30.326	2.599.990	2.630.316
(2) VENT EXT+INT DIA	16.443	2.542.680	2.559.123
(3) VENT EXT+INT DIA+NOCHE1	16.443	2.141.800	2.158.243
(4) VENT EXT+INT DIA+NOCHE4	16.443	1.822.123	1.838.566

Ahorro en demanda de calefacción por el empleo de los intercambiadores es de 13.883kWh (45,8%).



Representación esquemática de la configuración calculada. Cotas en metros

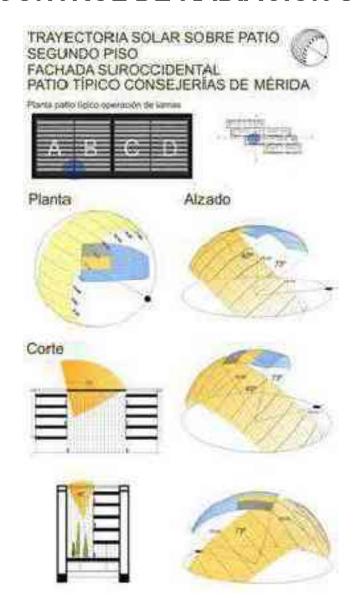

Temperatura

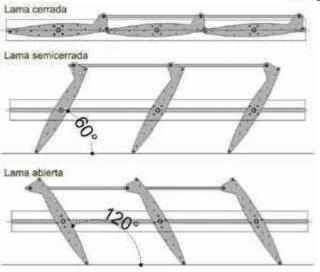
Porosidad Verano de cubierta Nula

Invierno Porosidad de cubierta nula

Verano. Cubierta atrio abierta al 50%

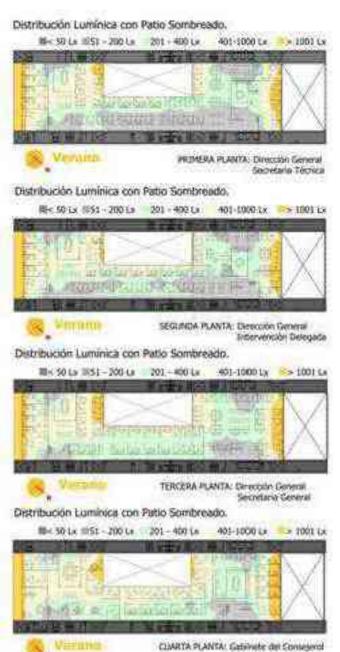
Invierno. Cubierta atrio abierta al 50% Invierno. Cubierta atrio abierta


Verano. Cubierta atrio abierta



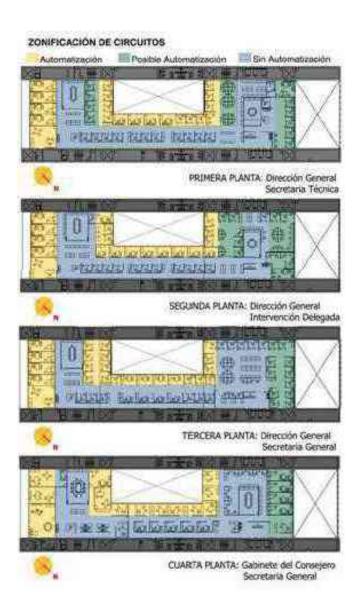

ENERSELVES Interreg Europe

CONTROL DE RADIACIÓN SOLAR



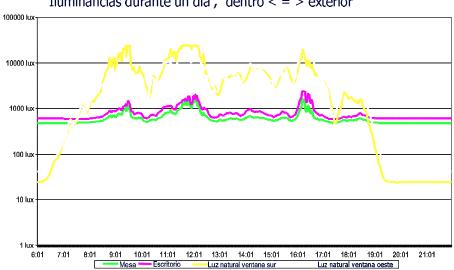
PROGRAMACIÓN DE SECUENCIAS PATIO TÍPICO CONSEJERIAS DE MÉRIDA PERÍODO I 21 ABRIL - 21 AGOSTO

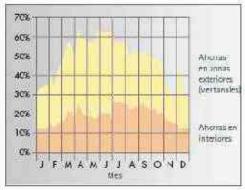
A	В	c	D
		-146 Sept.	
inces 10 13. best 16:35	Price 10 15 Sne 15 46	James 90 19: New 15: 45	men 10.55 four 19.45
nuce Of St. Sew 18:30	more DECID floor 10 cm	Apple 08:00 Block 10:30	mino 08:00 fired 14:00


JUNTA DE EXTREMADURA

Secretaria General

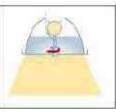
ILUMINACIÓN NATURAL

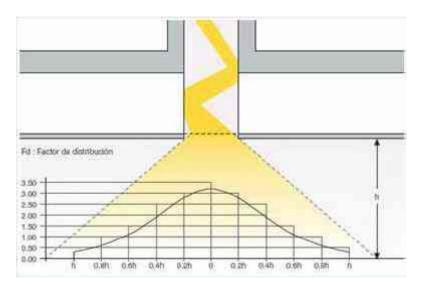




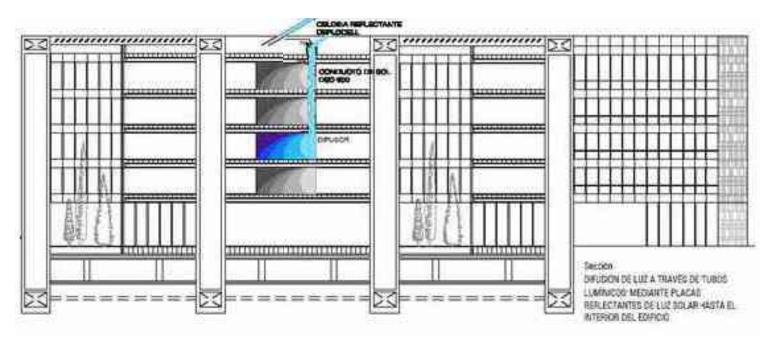
LUMINARIAS CON CONTROL DE LUZ

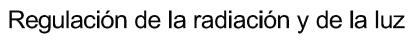
Iluminancias durante un día, dentro < = > exterior

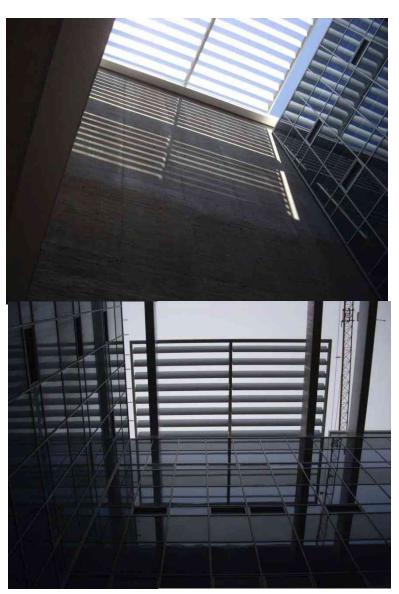






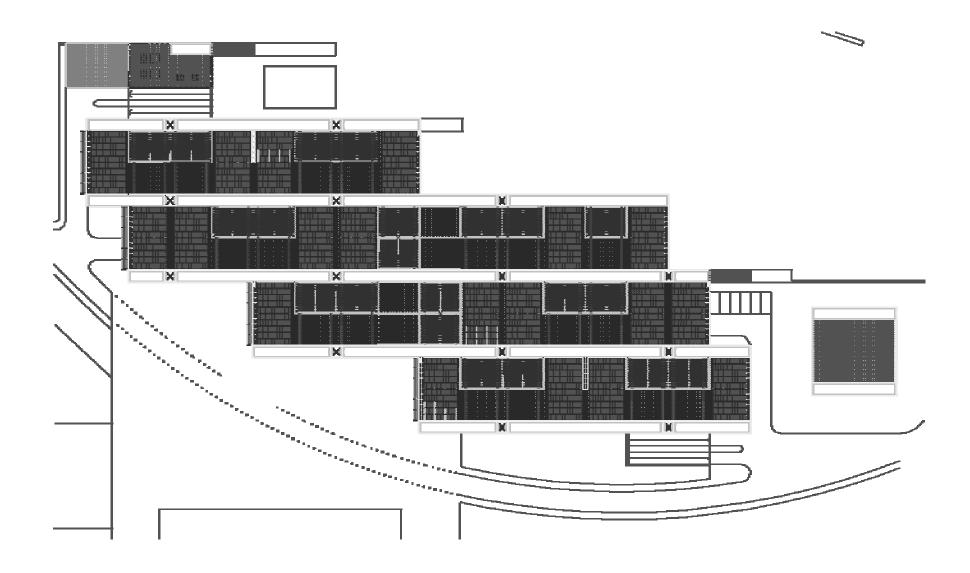






Falso techo de islas Uso de la inercia de las losas de hormigón

PANELES FOTOVOLTAICOS


Nº de módulos fotovoltaicos	660
Modelo de panel fotovoltaico	BP3165S
Potencia de Pico de la Instalación	108,9 kWp

ас
ca
Wp
erancia +/-1Hz)
(Tolerancia 197-251V)
on respecto al Sur)

Distribución de módulos en cubierta

EVALUACIÓN DE LA EFICIENCIA ENERGÉTICA DEL EDIFICIO

Caso 1: Edificio de Referencia del CTE.

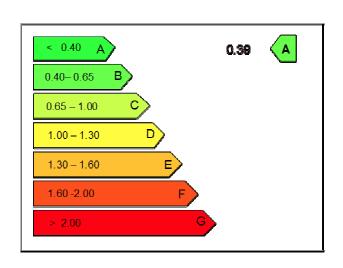
Mes	Calefacción(kWh)	Refrigeración(kWh)
Enero	65426,94	0
Febrero	45225,72	0
Marzo	32913,61	0
Abril	17584,49	0
Mayo	999,15	12002,03
Junio	0	67684,01
Julio	0	102658,97
Agosto	0	99854,49
Septiembre	0	74727,76
Octubre	3863,22	19470,33
Noviembre	29945,57	0
Diciembre	62347,55	0
TOTAL	258306,25	376397,59
(kWh)/m ² ·año	16,49	24,03
Área suelo calefactado:	15662	m^2

Caso 2: Edificio de Proyecto sin intercambiador.

Caso 3: Edificio de Proyecto con intercambiador.

Mes	Calefacción(kWh)	Refrigeración(kWh)
Enero	38401,93	0
Febrero	24937,1	0
Marzo	13825,16	0
Abril	3221,36	19,55
Mayo	0	6888,87
Junio	0	56851,57
Julio	0	84272,88
Agosto	0	82507,64
Septiembre	0	64495,17
Octubre	0	12677,87
Noviembre	10652,85	0,24
Diciembre	35775,84	0
TOTAL	126814,24	307713,79
(kWh)/m²·año	8,1	19,65
(KVVII)/III dilo	0,1	10,00
Área suelo calefactado:	15662	m^2

Mes	Calefacción(kWh)	Refrigeración(kWh)
Enero	49317,83	0
Febrero	33788,64	0
Marzo	23800,85	0
Abril	9070,47	127,26
Mayo	0	25490,51
Junio	0	65849
Julio	0	93077,27
Agosto	0	90527,61
Septiembre	0	68698,73
Octubre	395,74	26529,61
Noviembre	19666,04	0,24
Diciembre	46398,9	0
TOTAL	182438,47	370300,23
(1344).572 ~	44.05	00.04
(kWh)/m ² ⋅año	11,65	23,64
Área suelo calefactado:	15662	m ²


El resultado obtenido muestra que el intercambiador ahorra aproximadamente un 17% en refrigeración y un 45% en calefacción.

CONCLUSIONES

Etiqueta y valores de la calificación energética para el edificio. Fuente: Calener GT

Concepto	Edif. Obj.	Edif. Ref
Emisiones (kg CO ₂ /(m² año)	23,47	60,60

	Objeto	Referencia	Reducción de emisiones
	kg CO2/m 2	kg CO2/m2	%
Climatización	13,66	41,4	67,00
ACS	0,18	0,3	40,00
iluminación	9,63	18,9	49,05
Total	23,47	60,6	61,27

GRACIAS POR SU ATENCIÓN

Autoconsumo Fotovoltaico

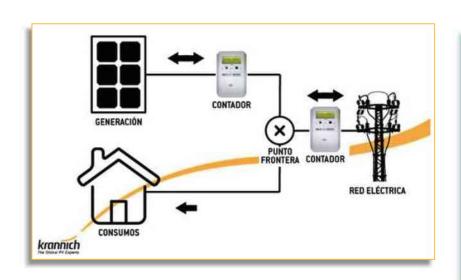
Daniel Encinas Martín

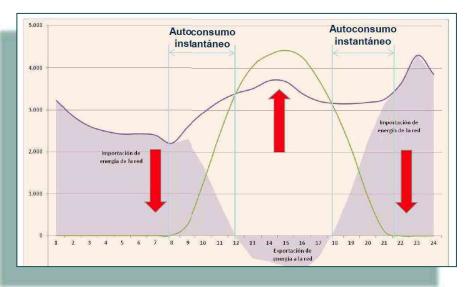
Coordinador Técnico. Agencia Extremeña de la Energía dencinas@agenex.org

23 Febrero 2017 | Badajoz, UNEX. Escuela de Ingenierias Industriales

- 1. ¿Que es el autoconsumo fotovoltaico?
- Tipologías de instalaciones generadoras de baja tensión: La ITC 40 del REBT.
- 3. Definiciones y actores. La Ley del Sector Eléctrico.
- 4. Normativa general a cumplir. El RD 1669/2011 y el RD 900/2015
- 5. Normas y esquemas unifilares de compañía distribuidora.
- 6. Aspectos a tener en cuenta en el dimensionamiento.

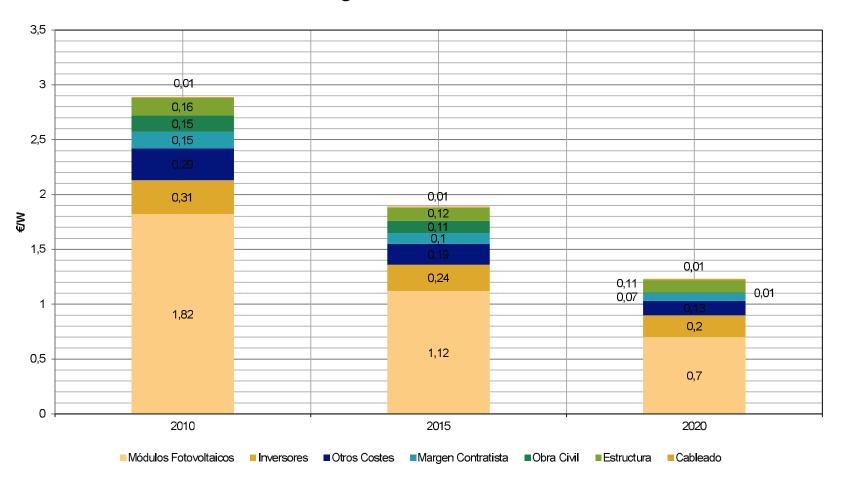
Instalaciones fotovoltaicas para autoconsumo


¿QUE ES EL AUTOCONSUMO?



¿QUE ES EL AUTOCONSUMO?

- Autoconsumo o consumo propio de energía eléctrica:
 "Consumo por la misma persona física o jurídica que genera la energía."
- Tradicionalmente aplicada a las instalaciones de cogeneración en Régimen Especial.
- 2009: Alrededor del 30% de la energía eléctrica generada en cogeneración era consumida en los centros de consumo.



¿QUE ES EL AUTOCONSUMO?

■ Fuente: Boston Consulting / IDAE

Instalaciones fotovoltaicas para el autoconsumo

TIPOLOGÍAS SEGÚN EL REBT

ITC 40. Instalaciones generadoras en BT:

MINISTERIO
INDUSTRIA,
ENERGÍA Y
TURISMO

GUÍA TÉCNICA DE APLICACIÓN

INSTALACIONES GENERADORAS DE BAJA TENSIÓN GUÍA-BT-40

Edición: sept-13 Revisión: 1

2. CLASIFICACION

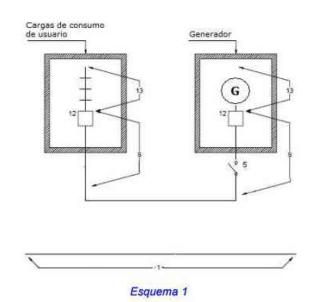
Las Instalaciones Generadoras se clasifican, atendiendo a su funcionamiento respecto a la Red de Distribución Pública, en:

- a) Instalaciones generadoras aisladas: aquellas en las que no puede existir conexión eléctrica alguna con la Red de Distribución Pública.
- b) Instalaciones generadoras asistidas: Aquellas en las que existe una conexión con la Red de Distribución Pública, pero sin que los generadores puedan estar trabajando en paralelo con ella. La fuente preferente de suministro podrá ser tanto los grupos generadores como la Red de Distribución Pública, quedando la otra fuente como socorro o apoyo. Para impedir la conexión simultánea de ambas, se deben instalar los correspondientes sistemas de conmutación. Será posible no obstante, la realización de maniobras de transferencia de carga sin corte, siempre que se cumplan los requisitos técnicos descritos en el apartado 4.2
- c) Instalaciones generadoras interconectadas: Aquellas que están, normalmente, trabajando en paralelo con la Red de Distribución Pública.

Instalaciones generadoras aisladas.

— Se trata de sistemas totalmente aislados de la red de distribución, apoyados o no por otros generadores, que dan servicio a consumos sin que, en ningún caso, exista conexión física con la red de distribución.

Normalmente contarán con sistemas de acumulación eléctrica y suministrarán la totalidad del consumo.


— La puesta en servicio de ese tipo de instalaciones está regulada por lo establecido en la ITC-BT-04 del Reglamento Electrotécnico para Baja Tensión.

ESQUEMAS DE INSTALACIONES AISLADAS.

	TITULAR	CONEXIÓN GENERACIÓN	FUNCIONAMIENTO	UBICACIÓN	MEDIDA
AISLADAS Esq-1	SUMTRO ASOCIADO	INSTALACIÓN INTERIOR	MODO AISLADO	INSTALACIÓN INTERIOR	Ninguno

El hecho de que está instalación esté conectada permanentemente al generador no implica que puedan utilizarse las protecciones del generador como protección de los circuitos de las cargas de manera que las protecciones serán:

Levenda para instalaciones receptoras

- 1 Red de distribución
- 2 Acometida
- 3 Caja general de protección (CGP)
- 4 Linea general de alimentación (LGA)
- 5 Interruptor general de maniobra (IGM)
- 6 Caja de derivación
- 7 Centralización de contadores (CC)
- 8 Derivación Individual (DI)
- 9 Fusible de seguridad
- 10 Contador
- 11 Caja para interruptor de control de potencia (ICP)
- 12 Dispositivos generales de mando y protección (DGMP).
- 13 Instalación interior
- 14 Conjunto de protección y medida (CMP)

Levenda para instalaciones generadoras

- 1 Red de distribución
- 2 Acometida
- 3 Caja General de Protección (CGP)
- 4 Linea General de conexión (LGC)
- 5 Interruptor general de maniobra (IGM)
- 6 Caja de derivación
- 7 Centralización de contadores (CC)
- 8 Linea Individual del generador (LIG)
- 9 Fusible de seguridad
- 10 Contador
- 11 Caja para interruptor de control de potencia
- 12 Dispositivos de mando y protección Interiores
- 13 Equipo generador-inversor (GEN)
- 14 Conjunto de protección y medida (CMP)
- 15 Conmutador de conexión red/generador con sistema de sincronismo
- 16 Tramo de la conexión privada (TCP)

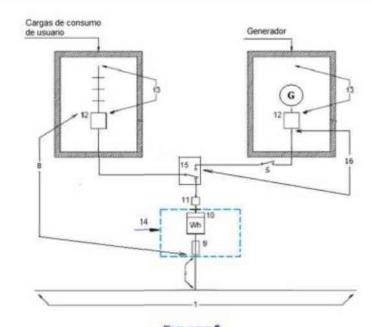
Instalaciones asistidas por la red de distribución.

— Se trata de sistemas que dan servicio a consumos que, a su vez, cuentan con suministro de la red de distribución y que, además, podrían estar apoyados por otros generadores (grupos electrógenos, aerogeneradores, etc.). La red de distribución y los generadores, nunca podrán abastecer los consumos simultáneamente.

Tienen conexión física con la red eléctrica de distribución, pero sin trabajar en paralelo con ella.

— La puesta en servicio de ese tipo de instalaciones, está regulada por lo establecido en la ITC-BT-04 del Reglamento Electrotécnico para Baja Tensión.

Levenda para instalaciones receptoras


- 1 Red de distribución
- 2 Acometida
- 3 Caja general de protección (CGP)
- 4 Linea general de alimentación (LGA)
- 5 Interruptor general de maniobra (IGM)
- 6 Caja de derivación
- 7 Centralización de contadores (CC)
- 8 Derivación individual (DI)
- 9 Fusible de seguridad
- 10 Contador
- 11 Caja para interruptor de control de potencia (ICP)
- 12 Dispositivos generales de mando y protección (DGMP).
- 13 Instalación interior
- 14 Conjunto de protección y medida (CMP)

Leyenda para instalaciones generadoras

- 1 Red de distribución
- 2 Acometida
- 3 Caja General de Protección (CGP)
- 4 Linea General de conexión (LGC)
- 5 Interruptor general de maniobra (IGM)
- 6 Caia de derivación
- 7 Centralización de contadores (CC)
- 8 Linea Individual del generador (LIG)
- 9 Fusible de seguridad
- 10 Contador
- 11 Caja para interruptor de control de potencia
- 12 Dispositivos de mando y protección Interiores
- 13 Equipo generador-inversor (GEN)
- 14 Conjunto de protección y medida (CMP)
- 15 Conmutador de conexión red/generador con sistema de sincronismo
- 16 Tramo de la conexión privada (TCP)

ESQUEMAS DE INSTALACIONES ASISTIDAS.

	TITULAR	CONEXIÓN GENERACIÓN	FUNCIONAMIENTO	UBICACIÓN	MEDIDA
ASISTIDAS Esq-2	SUMTRO ASOCIADO	INSTALACIÓN INTERIOR	MODO ASISTIDO	INSTALACIÓN INTERIOR	Ninguno

Esquema 2

El conmutador de conexión red/generador (bloque 15), podrá sustituir al interruptor general de maniobra (IGM), siempre que el conmutador cumpla al menos las mismas condiciones técnicas y de ubicación exigidas a dicho interruptor, según la ITC-BT-16 e ITC-BT-40, apartado 4.3.3.

Instalaciones interconectadas.

- Se trata de sistemas conectados a la red de distribución, bien directamente (conexión a red tradicional), o bien a través de una red interior.
- La puesta en servicio de las instalaciones interconectadas depende de su tipología precisa, de la obtención de los derechos de acceso y conexión a la red, que han de solicitarse a la empresa distribuidora (aun en el caso de que la conexión se lleve a cabo en una red interior), para lo que se estará a lo dispuesto al respecto en el Real Decreto 1699/2011, de 18 de noviembre.

En los casos en los que para la obtención de los citados derechos sea exigible el depósito del aval de 10 €/kW (instalaciones de potencia superior a 10 kW), este se realizará preferiblemente ante los servicios centrales o territoriales de la Caja General de Depósitos de la Junta Extremadura.

c) Instalaciones interconectadas

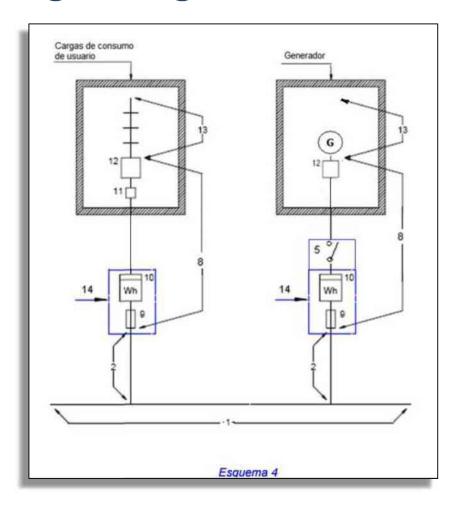
c1) Las instalaciones generadoras con punto de conexión en la red de distribución de baja tensión en la que hay otros circuitos e instalaciones de baja tensión conectados a ella, independientemente de que la finalidad de la instalación sea tanto vender energía como alimentar cargas, en paralelo con la red.

c2) Las instalaciones generadoras con punto de conexión en la red de alta tensión mediante un transformador elevador de tensión, que no tiene otras redes de distribución de baja tensión que alimentan cargas ajenas, conectadas a él. Este esquema, está igualmente incluido en las condiciones del RBT, aunque por su consideración de instalación generadora conectada directamente a la red de AT requiere condiciones especiales de conexión, atendiendo a las reglamentaciones vigentes sobre protecciones y condiciones de conexión en alta tensión.

11 esquemas tipo para C1 y 3 para C2

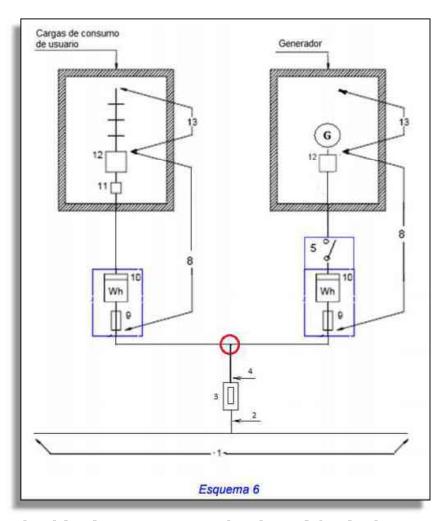
ESQUEMAS DE INSTALACIONES INTERCONECTADAS. (C1)

INTERCONEC TADAS TIPO C1	TITULAR	CONEXIÓN GENERACIÓN	FUNCIONAMIEN TO	UBICACIÓN	MEDIDA
Esq-3	SOLO GENERACI ON (G)	RED DISTRIBUCIÓN (PI)	INDEPENDIENTE (0	ACOMETIDA (U) UNICO USUARIO	SÓLO GENERACIÓN (G)
Esq-4	SUMTRO ASOCIADO (A)	RED DISTRIBUCIÓN (R)	INDEPENDIENTE 10	ACOMETICA (U) UNICO USUARIO	DOBLE (D) GENERAC/COM SUMO
Esq-5	SUMTRO ASOCIADO (A)	RED DISTRIBUCIÓN (R)	MODO SEPARADO (S)	ACOMETIDA (U) UNICO USUARIO	DOBLE (D) GENERACICON SUMO
Esq-6	SUNTRO ASOCIADO (A)	INSTALACIÓN INTERIOR (P) LGA	INDEPENDIENTE IO	ACOMETIDA (U) UNICO USUARIO	DOBLE (D) GENERACION SUMO
Esq-7	SUMTRO ASOCIADO (A)	INSTALACIÓN INTERIOR (P)	INDEPENDIENTE (0	(U) UNICO USUARIO	EINICO BIDIRECCIONA (R)
Esq-8	SUMTRO ASOCIADO (A)	INSTALACIÓN INTERIOR (P) A DGMP o CMP	INDEPENDIENTE (0)	ACOMETIDA (U) UNICO USUARIO	DIVICO BIDIRECCIONA (E)
Esq-9	SUMTRO ASOCIADO (A)	INSTALACION INTERIOR CENTRALIZACI ON	MDEPENDIENTE (0	CENTRALIZAC CONTADORES (C)	DOBLE (D) GENERACICOI SUMO
Esq-10	SUMTRO ASOCIADO (A)	INSTALACIÓN INTERIOR (P) LGA	MODO SEPARADO (S)	(U) UNICO USUARIO	DOBLE (D) GENERACION SUMO
£89-11	SUMTRO ASOCIADO (A)	INSTALACIÓN INTERIOR (P) DI	MODO SEPARADO (S)	ACOMETIDA (U) ÚNICO USUARIO	EVDIRECCIONA (E)
Esq-12 SUNITRO ASOCIADO (A)		INSTALACION INTERIOR CENTRALIZACI ON	MODO SEPARADO (S)	CENTRALIZAC CONTADORES (C)	DOBLE (D) GENERAC/CON SUMO
Eaq-13	SUMTRO ASOCIADO (A)	INSTALACION INTERIOR (P) DI	MODO SEPARADO (S)	CENTRALIZAC CONTADORES (C)	BIDIRECCIONA (BI)

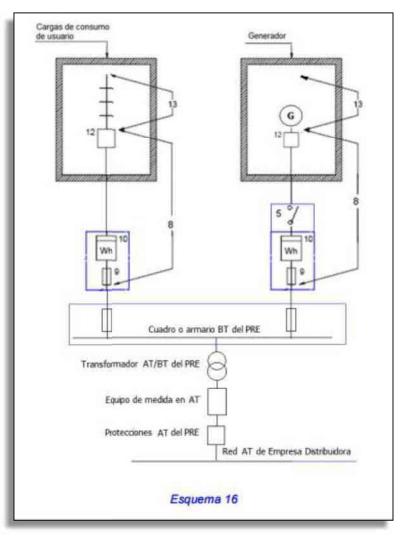


ESQUEMAS DE INSTALACIONES INTERCONECTADAS. (C2)

INTERCON ECTADAS TIPO C2	TITULAR	CCNEXIÓN GENERACIÓ N	FUNCIONAMIE NTO	UBICACIÓN	MEDIDA
Esq-14	SÓLO GENERACIÓN (G;	RED DISTRIBUCIÓ N (R)	INDEPENDIEN TE (I)	CT UNICO	SÓLO GENERACIÓN (G)
Esq-15	SUMTRO ASOCIADO (A)	RED DISTRIBUCIÓ N (R)	INDEPENDIEN TE (I)	SEPARADO S (C)	DOBLE (D) GENERAC/CONSUMO
Esq-16	SUMTRO ASOCIADO (A)	INSTALACIO N INTERIOR (P) BT	MODO SEPARADO (S)	CT UNICO	UNICO BIDIRECCIONAL EN MT (E) Y/O DOBLE (D) GENERAC/CONSUMO EN BT



Esquema 4: Instalación interconectada tipo C1, titular con suministro asociado, conexión en la red de distribución de baja tensión, funcionamiento independiente, acometida de un único usuario y medida doble.



Esquema 6: Instalación interconectada tipo C1, titular con suministro asociado, conexión en la red interior, funcionamiento independiente, acometida de un único usuario y medida doble.

Esquema 16: Instalación interconectada tipo C2, titular con suministro asociado, conexión en la red interior, funcionamiento independiente, acometida de un único usuario y medida doble.

Instalaciones fotovoltaicas para el autoconsumo

LA LEY DEL SECTOR ELECTRICO

Ley 24/2013, del Sector Eléctrico

Artículo 6. Sujetos:

Define los sujetos que desarrollan las actividades destinadas al suministro de energía, entre las que se encuentran:

- a) Los productores de energía eléctrica, que son aquellas personas físicas o jurídicas que tienen la función de generar energía eléctrica, así como las de construir, operar y mantener las instalaciones de producción.
- g) Los consumidores, que son las personas físicas o jurídicas que adquieren la energía para su propio consumo.

Ley 24/2013, del Sector Eléctrico

ARTICULO 9. Autoconsumo de energía eléctrica:

- Autoconsumo: El consumo de energía eléctrica proveniente de instalaciones de generación conectadas en el interior de una red de un consumidor o a través de una línea directa de energía eléctrica asociadas a un consumidor
- Suministro con autoconsumo: Solo consumidor
- Producción con autoconsumo: Consumidor y productor
- Consumidor a través de línea directa: Consumidor y productor
- En el caso de estar conectada al sistema eléctrico directa o indirectamente, están sujetos a las obligaciones definidas en la ley.
- Deben contribuir a los costes y servicios del sistema por la energía autoconsumida.
- Deben inscribirse en el registro administrativo correspondiente

Ley 24/2013, del Sector Eléctrico

ARTÍCULO 41. Acceso a las redes de distribución

1. Las instalaciones de distribución podrán ser utilizadas por los sujetos autorizados de acuerdo con lo dispuesto en el artículo 8.

El precio por el uso de redes de distribución se determinará de acuerdo a lo dispuesto en el artículo 16.

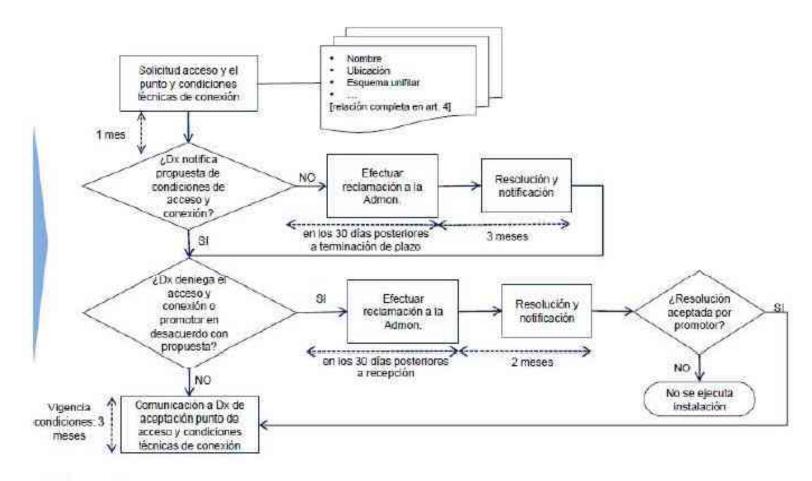
2. El gestor de la red de distribución deberá otorgar el permiso de acceso a la red de distribución de acuerdo a los criterios establecidos en el artículo 33.

Instalaciones fotovoltaicas para el autoconsumo

REAL DECRETO 1699/2011 DE 18 DE NOVIEMBRE

Establece determinadas condiciones administrativas y técnicas básicas para la conexión a las redes de distribución de energía eléctrica de las instalaciones de producción de energía eléctrica incluidas en su ámbito de aplicación:

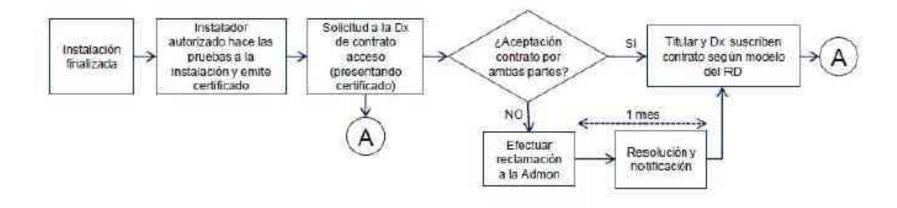
- a) cuando se conecten a las líneas de tensión no superior a 1 kV de la empresa distribuidora, bien directamente o a través de una red interior de un consumidor,
- b) cuando se conecten al lado de baja de un transformador de una red interior, a una tensión inferior a 1 KV, de un consumidor conectado a la red de distribución y siempre que la potencia instalada de generación conectada a la red interior no supere los 100 kW.
- 2. También será de aplicación a las instalaciones de régimen ordinario y régimen especial de potencia no superior a 1000 kW de las tecnologías contempladas en la categoría a) y de los subgrupos b.6, b.7 y b.8 del <u>artículo 2 del Real Decreto</u> 661/2007, de 25 de mayo, que se conecten a las líneas de tensión no superior a 36 kV de la empresa distribuidora, bien directamente o a través de una red interior de un consumidor.



- En su Capítulo II establece las condiciones de acceso y conexión a la red de distribución.
- En su Capítulo III, establece las condiciones técnicas que deben cumplir las instalaciones, entre las que se encuentran las protecciones de las que deben disponer.
- En su disposición adicional primera, establece la posibilidad de que las instalaciones de producción de energía eléctrica con potencia nominal no superior a 100 kW, conectadas directamente a una red de tensión no superior a 1 kV, ya sea de distribución o a la red interior de un consumidor, queden excluidas del régimen de autorización administrativa previa.-

*Dx-Distribuidora

Fuente: UNEF 26



Fuente: UNEF 27

Fuente: UNEF 28

- a) Un elemento de corte general que proporcione un aislamiento requerido por el Real Decreto 614/2001, de 8 de junio, sobre disposiciones mínimas para la protección de la salud y seguridad de los trabajadores frente al riesgo eléctrico.
- b) Interruptor automático diferencial, con el fin de proteger a las personas en el caso de derivación de algún elemento a tierra.
- c) Interruptor automático de la conexión, para la desconexión-conexión automática de la instalación en caso de anomalía de tensión o frecuencia de la red, junto a un relé de enclavamiento.
- d) Protecciones de la conexión máxima y mínima frecuencia (51 Hz y 48 Hz con una temporización máxima de 0,5 s y de mínima 3 s respectivamente) y máxima y mínima tensión entre fases (1,15 Un y 0,85 Un)

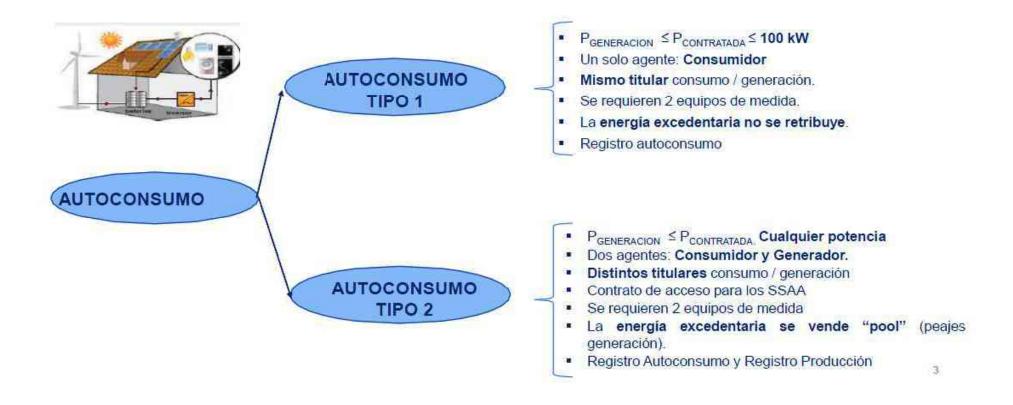
En caso de actuación de la protección de máxima frecuencia, la reconexión sólo se realizará cuando la frecuencia alcance un valor menor o igual a 50 Hz.

Condiciones específicas para la conexión en redes interiores

1. La conexión se realizará, en el punto de la red interior de su titularidad más cercano a la caja general de protección, de tal forma que permita aislar simultáneamente ambas instalaciones del sistema eléctrico.

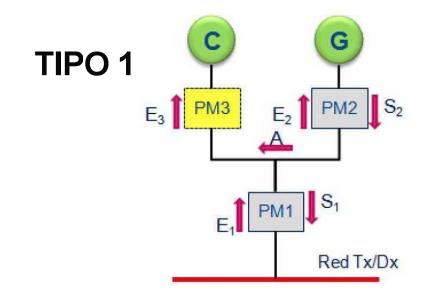
En el caso de que el punto de conexión a la red de distribución sea en alta tensión y exista un centro de transformación propiedad del consumidor, la conexión de la instalación de producción se realizará en el cuadro de salida de baja tensión del transformador.

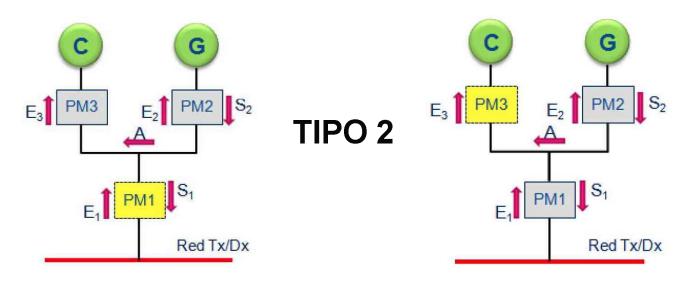
- 2. El titular de la red interior habrá de ser el mismo para todos los equipos de consumo e instalaciones de generación que tuviera conectados en su red.
- 3. Las instalaciones de producción conectadas a una red interior no podrán superar la capacidad disponible en el punto de conexión a la red de distribución ni la potencia vinculada a los derechos de extensión vigentes adscritos al suministro.


Instalaciones fotovoltaicas para el autoconsumo

REAL DECRETO 900/2015 DE 9 DE OCTUBRE

REAL DECRETO 900/2015 de 9 de Octubre




Fuente: Enel

REAL DECRETO 900/2015 de 9 de Octubre

Fuente: Enel

REAL DECRETO 900/2015 de 9 de Octubre

a) Se aplicarán cargos fijos en función de la potencia, en €/kW, cuyo precio será el siguiente para cada categoría de peajes de acceso:

NT	Peaje de acceso		Cargo fijo (€/kW)						
		Periodo 1	Periodo 2	Periodo 3	Periodo 4	Periodo 5	Periodo 6		
T	2.0 A (Pc ≤ 10 kW)	8,989169							
	2.0 DHA (Pc ≤ 10 kW)	8,989169							
	2.0 DHS (Pc ≤ 10 kW)	8,989169							
	2.1 A (10 < Pc ≤ 15 kW)	15,390453							
	2.1 DHA (10 < Pc ≤ 15 kW)	15,390453							
	2.1 DHS (10 < Pc ≤ 15 kW)	15,390453							
	3.0 A (Pc > 15 kW)	32,174358	6,403250	14,266872					
Т	3.1 A (1 kV a 36 kV)	36,608828	7,559262	5,081433	0,000000	0,000000	0,000000		
	6.1A (1 kV a 30 kV)	22,648982	8,176720	9,919358	11,994595	14,279706	4,929022		
	6.1B (30 kV a 36 kV)	16,747077	5,223211	7,757881	9,833118	12,118229	3,942819		
	6.2 (36 kV a 72,5 kV)	9,451587	1,683097	4,477931	6,402663	8,074908	2,477812		
	6.3 (72,5 kV a 145 kV)	9,551883	2,731715	3,994851	5,520499	6,894902	1,946805		
	6.4 (Mayor o igual a 145 kV)	3,123313	0,000000	1,811664	3,511473	4,991205	1,007911		

Tanto para la modalidad de autoconsumo tipo 1 como para la modalidad tipo 2 la aplicación de dichos cargos fijos se realizará sobre la diferencia entre la potencia de aplicación de cargos definida en el artículo 3 y la potencia a facturar a efectos de aplicación de los peajes de acceso. En todos los casos se considerará esta diferencia nula cuando el valor sea negativo.

REAL DECRETO 900/2015 de 9 de Octubre

Peaje de acceso	Cargo transitorio por energía autoconsumida (€/kWh)					
	Periodo 1	Periodo 2	Periodo 3	Periodo 4	Periodo 5	Periodo 6
2.0 A (Pc ≤ 10 kW)	0,049033					
2.0 DHA (Pc ≤ 10 kW)	0,063141	0,008907				
2.0 DHS (Pc ≤ 10 kW)	0,063913	0,009405	0,008767			
2.1 A (10 < Pc ≤ 15 kW)	0,060728					
2.1 DHA (10 < Pc ≤ 15 kW)	0,074079	0,018282				
2.1 DHS (10 < Pc ≤ 15 kW)	0,074851	0,021301	0,014025			
3.0 A (Pc > 15 kW)	0,029399	0,019334	0,011155			
3.1A(1 kV a 36 kV)	0,022656	0,015100	0,014197			
5.1A (1 kV a 30 kV)	0,018849	0,016196	0,011534	0,012518	0,013267	0,008879
5.1B (30 kV a 36 kV)	0,018849	0,013890	0,010981	0,011905	0,012871	0,008627
5.2 (36 kV a 72,5 kV)	0,020138	0,016194	0,011691	0,011696	0,011996	0,008395
5.3 (72,5 kV a 145 kV)	0,022498	0,017414	0,012319	0,011824	0,011953	0,008426
5.4 (Mayor o igual a 145 kV)	0,018849	0,013138	0,010981	0,011104	0,011537	0,008252

Instalaciones fotovoltaicas para el autoconsumo

ESQUEMAS UNIFILARES

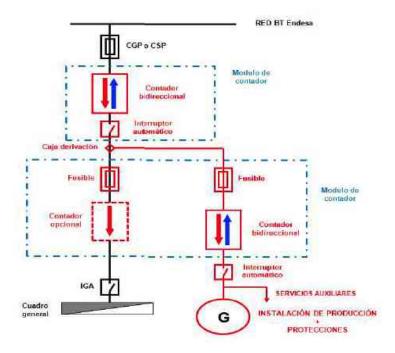
5. PUNTOS A REVISAR EN LAS INSPECCIONES DE INSTALACIÓN DE ENLACE DE SUMINISTROS ACOGIDOS AL AUTOCONSUMO

Como recordatorio, se indican los puntos principales a tener en cuenta en las revisiones de la instalación de enlace de los suministros acogidos a las modalidades de autoconsumo, serán los siguientes:

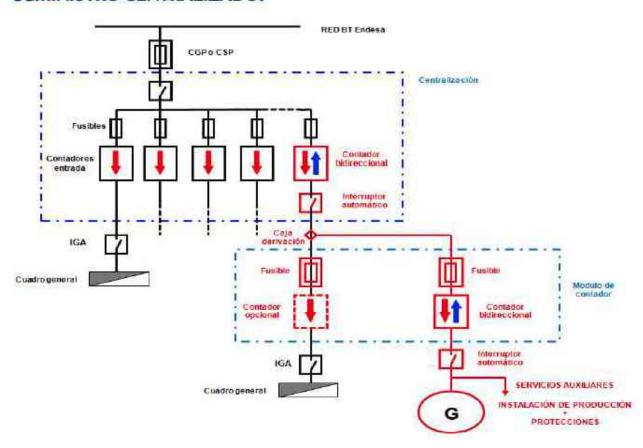
- Que la instalación o instalaciones de producción están conectadas en la red interior del consumidor asociado.
- Que exista un elemento de corte accesible de forma libre y permanente a la empresa distribuidora que desconecte simultáneamente al consumidor asociado y a las instalaciones de producción con el aislamiento requerido por el RD 614/2001.
- Que la potencia de la instalación de producción o la suma de todas las potencias de las instalaciones de producción conectadas en la red interior no sea superior a la potencia contratada del consumo asociado.
- Que si la potencia de la instalación de producción o la suma de todas las potencias de las instalaciones de producción conectadas en la red interior es superior a 5 kW, el contrato del consumo asociado es trifásico y el desequilibrio entre fases es menos de 5 kW.

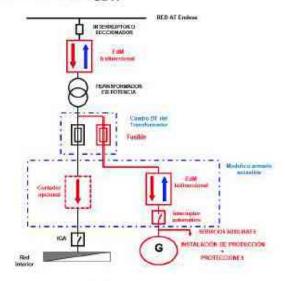
orma de operación para Inspección de Instalaciones de enlace

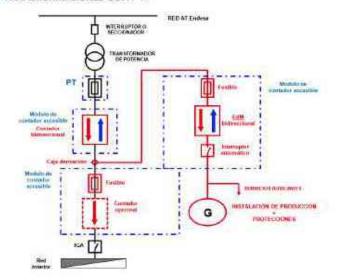
EDMA-CIM-03 v2 - Anexo 8 v1 - 28/03/2016


- Que en el circuito o circuitos de generación no hay conectados elementos de consumo, solo los elemento de acumulación y los SSAA de producción.
- Que está preparada la instalación para la colocación de los equipos necesarios para la facturación de los precios, tarifas, cargos o peajes que le sean de aplicación según la modalidad de autoconsumo elegido.
- Que las envolventes de los equipos de medida a instalar cumplen con lo marcado en el REBT y en las NTP y tiene las correspondientes protecciones.
- Que la instalación de producción cuenta con todas sus protecciones y funcionan correctamente.

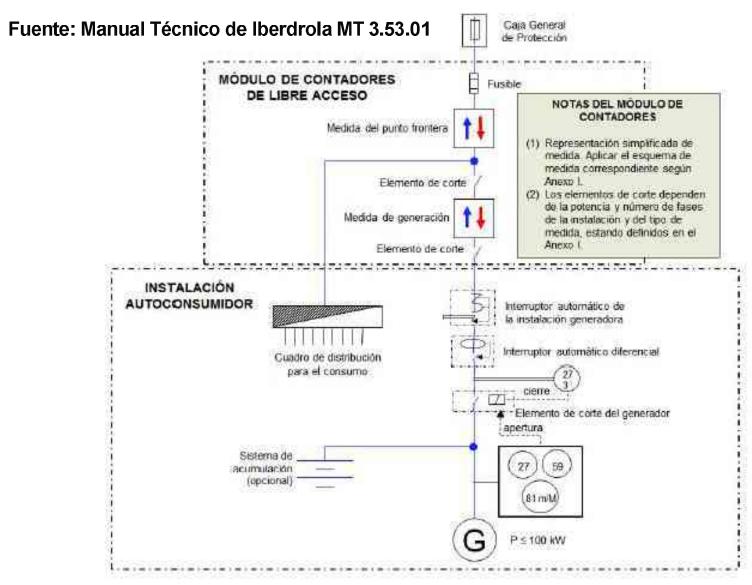
6. ESQUEMAS CONEXIONADO AUTOCONSUMO


- 6.1. AUTOCONSUMO TIPO 1 Y TIPO 2 CON POTENCIA DE GENERACIÓN INSTALADA ≤ 100 KW Y SUJETO CONSUMIDOR = PRODUCTOR.
- 6.1.1. CONEXIÓN DEL PRODUCTOR EN LA DERIVACIÓN INDIVIDUAL DE UN SUMINISTRO INDIVIDUAL.

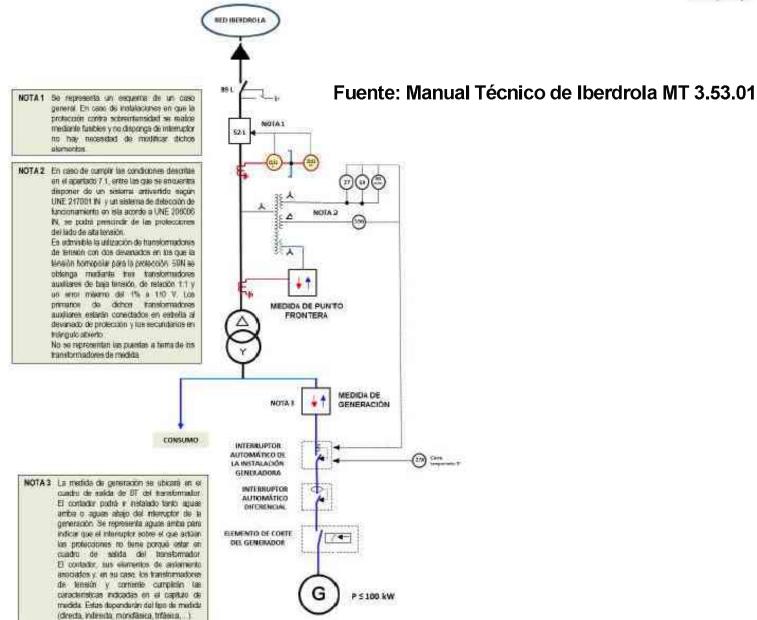

6.1.2. CONEXIÓN DEL PRODUCTOR EN LA DERIVACIÓN INDIVIDUAL DE UN SUMINISTRO CENTRALIZADO.

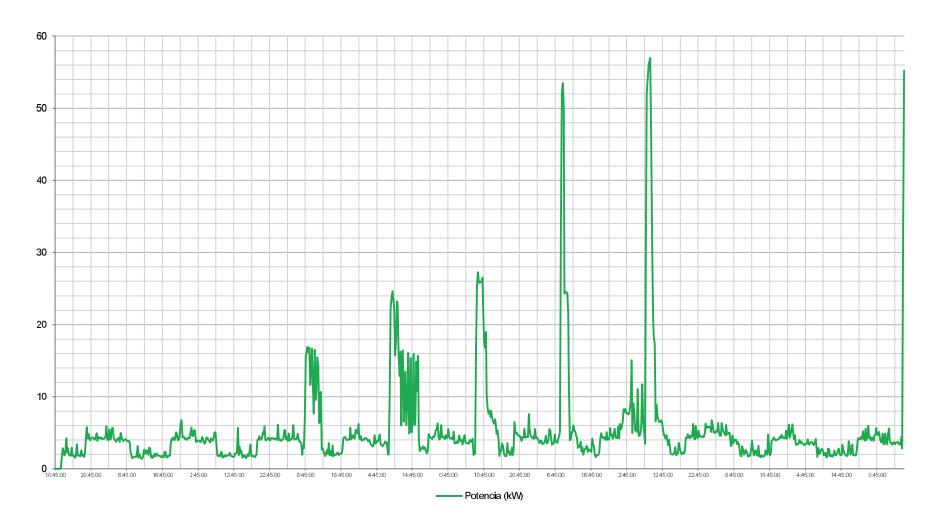


6.1.3. TRANSFORMADORES CON CBT.

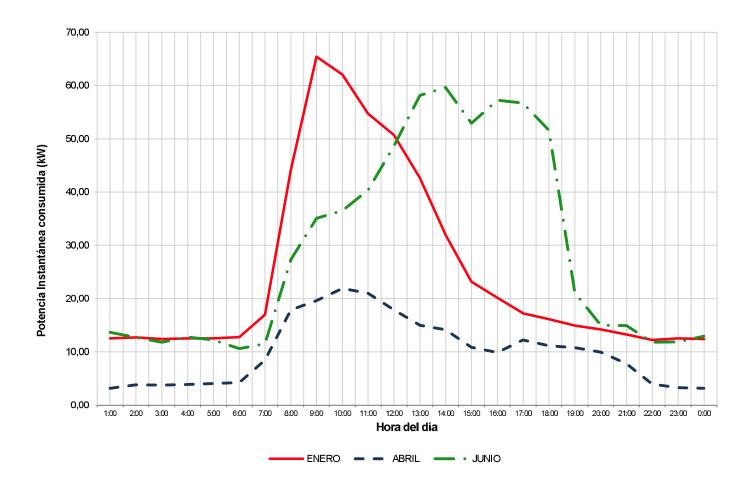


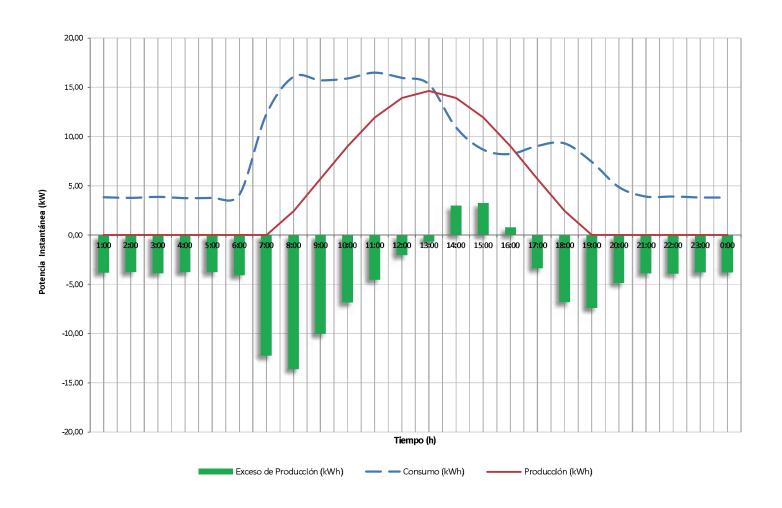
6.1.4. TRANSFORMADORES CON PT.

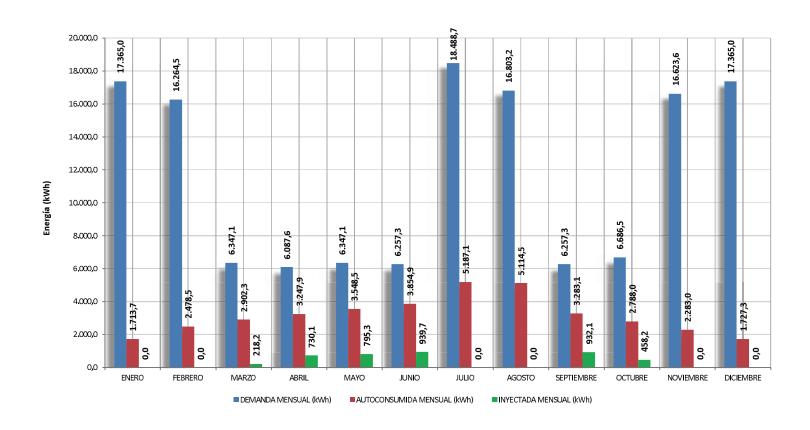




Instalaciones fotovoltaicas para el autoconsumo







- La producción fotovoltaica se concentra en las horas centrales del día, por lo tanto los perfiles el perfil de consumos eléctricos más adecuado para rentabilizar una instalación debe ser tal que éstos se concentren en la medida de lo posible en esas horas y sean lo más estables posible. Siempre que sea posible será interesante estudiar el desplazamiento de cargas a esas horas.
- Los excesos de producción son vendidos a la red eléctrica convencional a precio de mercado mientras que si la energía es auto-consumida, su valor es el del coste de la electricidad sustituida en el edificio y por lo tanto con un importe mayor.
- El dimensionamiento de la potencia fotovoltaica a instalar deberá ir dirigido a buscar una solución de compromiso entre la minimización de la inyección de energía a la red (lo que minimizará a su vez el periodo de retorno y maximizará la TIR) y por otro lado el incremento del Valor Actual Neto.

- Procediendo de esta manera se han obtenido coberturas fotovoltaicas en los casos estudiados del orden del 20-25% en los edificios administrativos y el 25-30% en los centros de salud.
- El contrato eléctrico del tipo 3.0A, es más adecuado para el autoconsumo debido a que la diferencia entre el precio de la energía de la red y los peajes de respaldo es mayor que en otros tipos de contratos.
- Aquellos edificios que disponen de tarifas 3.0A obtienen buenos resultados económicos en ausencia de peajes de respaldo y, en cualquier caso, coberturas energéticas altas.

Interreg Europe

Thank you!

Questions welcome

Project smedia