

Content

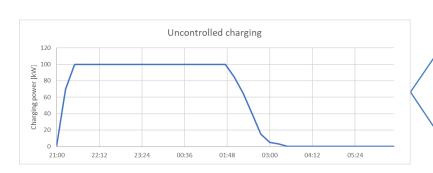
- » Introduction to smart charging
- » Participation in IRIS project
- » Qbuzz timeline
 - » Past years
 - » Current situation
 - » Future
- » Recap

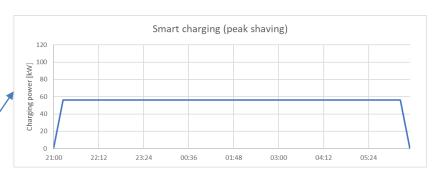
Introduction to smart charging

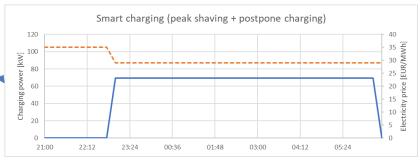
- » Smart charging: Not an widely accepted definition yet
- In the context of Qbuzz: A charging system in which we control the charging pattern of the electric bus at the depots
 - » Power and timing
 - » Total charged remains the same
- » Why smart charging?
 - » Control the peak power
 - » Less impact on the grid
 - Enables a smaller connection to the grid
 - » Reduced electricity costs
 - » Control timing of consumption
 - » Reduced electricity costs

Participation in the IRIS project

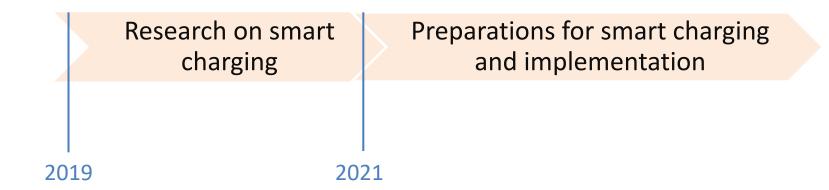
- » Horizon 2020 EU funded project
- » Duration: 5 years (2017-2022)
- » Participants: i.a. Utrecht University, Municipality of Utrecht, Qbuzz
- » Aim: Accelerate the adoption of energy, mobility and ICT initiatives
- » Our contribution: Sharing data for analysis, research etc.



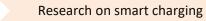




Introduction to smart charging



Timeline



2019 2020

- » Thesis Marle Zijlstra (Energy Science, UU)
 - » Aim:
 - » Compare the saving potential of 5 different smart charging strategies
 - » Peak shaving
 - » Day ahead market (DAM) trading
 - » DAM trading + vehicle-2-grid
 - » DAM trading + FCR (imbalance market)
 - » DAM trading + aFRR (imbalance market)
 - » Concluded most potential for:
 - » Peak shaving: electricity cost reduction 16-21%
 - » DAM trading: electricity cost reduction 43-48%
 - » Limitation:
 - » DAM prices as well as electricity consumption were assumed to be given

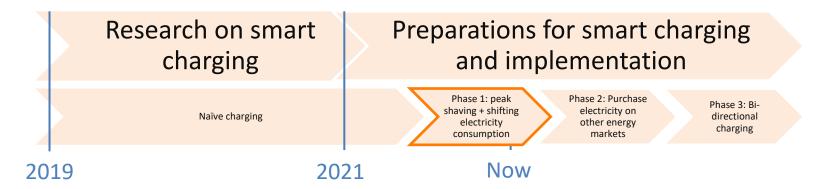
- » Hourly electricity prices and bigger price fluctuations
 - » Supply and demand based
 - » Higher saving potential

2019 2020

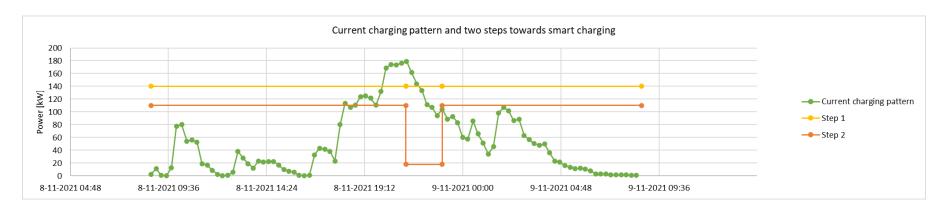
- » Thesis Marle Zijlstra (Energy Science, UU)
 - » Aim:
 - » Compare the saving potential of 5 different smart charging strategies
 - » Peak shaving
 - » Day ahead market (DAM) trading
 - » DAM trading + vehicle-2-grid
 - » DAM trading + FCR (imbalance market)
 - » DAM trading + aFRR (imbalance market)
 - » Concluded most potential for:
 - » Peak shaving: electricity cost reduction 16-21%
 - » DAM trading: electricity cost reduction 43-48%
 - » Limitation:
 - » DAM prices as well as electricity consumption were assumed to be given

2019 2021

- » Follow-up thesis
 - » Aim:
 - » Compare the saving potential of 3 different smart charging strategies
 - » Peak shaving
 - » Peak shaving + postpone charging (fixed electricity price based)
 - » DAM trading
 - » Based on <u>unknown</u> DAM prices and electricity consumption
 - » Conclusion:
 - » Peak shaving: electricity cost reduction 7-15%
 - » Peak shaving + postpone charging: electricity cost reduction 10-16%
 - » DAM trading: electricity cost reduction 7-53%


Timeline and charging strategies

Current situation


- » Preparation phase 1
 - » Testing hardware (chargers, buses) and software (ViriCiti)
 - » Determine limits using an optimization model
 - » Principle: all buses should be able to charge to 100% if they arrive with a SoC of 20%
- » First six depots in the coming weeks

Smart charging – example

- » Depot Zoutkamp
- » Step 1: Peak shaving
- » Step 2: Peak shaving + postponing charging

Future - phase 2

- » At the same time: Preparation phase 2
 - » Which energy markets are interesting for Qbuzz?
 - What does trading at those energy markets involve?
 - » E.g. Hardware, software, third parties
 - » Is the businesscase profitable?

Future - phase 3

- » At the same time: Preparation phase 3
 - » Pilot with refurbished 90 kWh bus battery
 - » Aim: Explore potential for electricity costs reduction with bigger battery packages & practical experience
 - » Appraoch:
 - Exploration possible strategies and requirements
 - » Explore businesscases >> GO/NO GO
 - » If GO: Start pilot

Recap

- » Smart charging: "A charging system in which we control the charging pattern of the electric bus at the depots"
- » Research has been conducted
- » Timeline has been set up
 - » Phase 1: Peak shaving and peak shaving + postpone charging
 - Fixed electricity price based
 - » Phase 2: Purchase electricity on other energy markets
 - » Phase 3: Bi-directional charging
- » Lower our electricity costs

Programme today

11:05	12:05	Parallel session 1 (Chair: Rien van Stigt) ZOCHER
		Experiences of ebusses by Keolis
		Gretha van Velthuizen (Keolis)
		Charging infra and spatial planning
		Aart Reurink (Province of Utrecht)

11:05	12:05	Parallel session 2 (Chair: Pascal Ravesteijn) CHAPEL
		Qdrive programme (Online)
		Martin Vis (Qbuzz)
		Monitoring of Zero Emission Busses
		Martijn Rotteveel (CROW)